Matematika 1 (opakovaná)/ Aplikovaná Informatika
2023/2024 -- Letný semester
stranka je momentalne v rekonstrukcii
Prednášajúci a cvičiaci
doc. RNDr. Boris Rudolf, CSc., boris.rudolf[at]stuba.sk, miestnosť A - 403
Podmienky účasti na skúške
Podmienkou účasti na skúške je získať aspoň 15 bodov počas semestra.
Rozdelenie bodov je 30 bodov počas semestra, tieto môžete získať na priebežných testoch, a 70 bodov na záverečnej skúške. Priebežné testy budú počas semestra dva. Orientačný termín: 1.test v šiestom týždni semestra, 2.test v jedenástom týždni semestra.
Oznamy
Prednášky a cvičenia
Na tomto mieste budú prístupné videá prednášok, texty prednášok, ukážky riešených príkladov a úlohy na prepočítanie, vždy na daný týždeň semestra.
Stručná osnova predmetu (Harmonogram prednášok)
- Pojem funkcie reálnej premennej. Vlastnosti funkcie, parita, ohraničenosť, maximum, minimum, supremum, infimum, inverzná funkcia.
- Elementárne reálne funkcie, mocninová, exponenciálna, logaritmická, Trigonometrické a cyklometrické funkcie.
- Limita a spojitosť funkcie. Konečné limity. Nevlastná limita. Limita v nevlastnom bode. Jednostranné limity.
- Spojitosť. Vlastnosti spojitých funkcií na uzavretom intervale.
- Pojem derivácie. Výpočet derivácie funkcie reálnej premennej. Geometrický význam derivácie, prvý diferenciál.
- Monotónnosť a lokálne extrémy. Vlastnosti diferencovateľnej funkcie na uzavretom intervale.
- Derivácie vyšších rádov. Konvexnosť a konkávnosť. Extrémy a 2.derivácia. L‘Hospitalovo pravidlo.
- Postupnosť ako funkcia na množine prirodzených čísel. Limita postupnosti. Vlastnosti. Postupnosť definovaná rekurentne.
- Nekonečné rady. Pojem konvergencie. Geometrický rad. Kritériá konvergencie radov s nezápornými členmi.
- Neurčitý integrál, definícia, elementárne integrály, metóda per partes a substitúcia.
- Integrovanie racionálnych funkcii, rozklad na elementárne zlomky.
- Určitý integrál (Riemannov), vzťah medzi integrálom a primitívnou funkciou, metódy integrovania, aplikácie určitého integrálu.
Literatúra
- SATKO, L.; ŠULKA, R. Matematická analýza 1. Bratislava: SVŠT v Bratislave, 1988. 217 s.
- ŠULKA, R.; MORAVSKÝ, L.; SATKO, L. Matematická analýza 1. Bratislava: Alfa, 1986. 389 s.
- Glyn, J.: Modern engineering mathematics, Addison Wesley, 2008
- Sabolová, M.; Satko, L.: Matematická Analýza I, Edičné stredisko STU, 2007 (Elektronický text dostupný na tejto strane).
- Kačníková, T.; Sladká, S.: Matematická analýza 1 (Zbierka príkladov), skriptá EF STU, Bratislava 1994
- Eliaš, J.; Horváth, J.; Kajan, J.: Zbierka úloh z vyššej matematiky, 2.diel; Alfa Bratislava 1966
Prednášky
Tu je elektronická verzia literatúry č. 4:
Oznamy
Cvičenia
Skúste výpočty a prípadne kreslenie grafov použitím https://www.wolframalpha.com/examples/Math.html
Tabuľku hodnôt goniometrických funkcií a niektoré goniometrické identity nájdete tu: