Revision 1389 as of 2024-10-21 07:29:33
You are not allowed to revert this page!

Clear message

Matematika 1 / Aplikovaná Informatika

2024/2025 -- Zimný semester

Prednášajúci

doc. RNDr. Boris Rudolf, CSc., boris.rudolf[at]stuba.sk, miestnosť A - 403

Prednášky

Deň

miestnosť

Od

Do

Krúžky

Učiteľ

pondelok

AB-300

10:00

11:40

všetky

B.Rudolf

štvrtok

AB-300

8:00

9:40

všetky

B.Rudolf

Cvičiaci

* RNDr. Karla Čipková, PhD., karla.cipkova[at]stuba.sk, miestnosť A - 424

* Mgr. Lucia Pospíšilová Škripková, PhD., miestnosť A - 406

* RNDr. Michal Zákopčan, PhD., michal.zakopcan[at]stuba.sk, miestnosť A - 401

Cvičenia

Deň

miestnosť

Od

Do

Krúžok

Učiteľ

streda

C-202

8:00

9:40

API 8

M.Zákopčan

streda

C-517

8:00

9:40

API 11

L.Pospíšilová Škripková

streda

C-202

10:00

11:40

API 2

M.Zákopčan

streda

C-517

10:00

11:40

API 9

L.Pospíšilová Škripková

streda

C-101

15:00

16:40

API 10

M.Zákopčan

štvrtok

C-202

13:00

14:40

API 1

M.Zákopčan

štvrtok

C-311

13:00

14:40

API 7

K.Čipková

štvrtok

C-202

15:00

16:40

API 3

M.Zákopčan

štvrtok

C-311

15:00

16:40

API 4

K.Čipková

štvrtok

C-202

17:00

18:40

API 5

M.Zákopčan

štvrtok

C-311

17:00

18:40

API 6

K.Čipková

Miestnosť E-702 bude použitá na výuku iba v prípade, že niekedy budú štvrtkové cvičenia spojené.

Nové Oznamy

10.10.2024

Rozdelenie do miestností na 1.teste: rozdelenieTest1.pdf

4.10.2024

Test bude trvať približne 50 minút a bude obsahovať 3 príklady.
Možné typy príkladov sú nasledujúce:

  1. Definičný obor, obor hodnôt a inverzná funkcia.
  2. Výpočet limity funkcie.
  3. Spojitosť funkcie.
  4. Rovnica dotyčnice a prvý diferenciál.
  5. Intervaly monotónnosti

23.9.2024 Termín prvého testu z M1 je pondelok 21.10.2024 od 12.00 do 12.50.

Prednášky a cvičenia

Na tomto mieste budú prístupné texty prednášok, ukážky riešených príkladov a úlohy na prepočítanie, vždy na daný týždeň semestra.


V tomto týždni dokončujeme kapitolu Diferenciálny počet.
Témy: L'Hospitalovo pravidlo, Asymptoty v nekonečne.

Video prednášky:
Video Prednáška 6.1.
Video Prednáška 6.2.

Textové prednášky:
Prednáška 6.1: Prednaska6-1.pdf
( Videoprednáška 6.2 obsahuje niekoľko ukážkových príkladov a táto časť nie je v textovej podobe.)

Riešené video-príklady:
Riešené príklady 6

Neriešené príklady:
Príklady 6: Priklady6.pdf
Príklady na 6. týždeň s riešeniami: Priklady6riesene.pdf


Stále sme v kapitole Diferenciálny počet.
Pokračujeme rozprávaním o lokálnych extrémoch. Uvedieme vety o vlastnostiach diferencovateľných funkcií na intervale [a,b]. Zavedieme derivácie vyšších rádov. Povieme, čo je konvexnosť a konkávnosť funkcie.

Video prednášky:
Video Prednáška 5.1.
Video Prednáška 5.2.

Textové prednášky:
Prednáška 5.1: Prednaska5-1.pdf
Prednáška 5.2: Prednaska5-2.pdf

Kultúrna vsuvka.

Riešené video-príklady:
Riešené príklady 5
Neriešené príklady:
Príklady 5: Priklady5.pdf
Príklady na 5. týždeň s riešeniami: Priklady5riesene.pdf


Pokračujeme v kapitole Diferenciálny počet.
Témy sú: derivácia inverznej funkcie, rovnica dotyčnice, monotónnosť a lokálne extrémy.
Na cvičeniach začíname s deriváciami.

Video prednášky:
Video Prednáška 4.1.
Video Prednáška 4.2.

Textové prednášky:
Prednáška 4.1: Prednaska4-1.pdf
Prednáška 4.2: Prednaska4-2.pdf

Riešené video-príklady:
Riešené príklady 4

Neriešené príklady:
Príklady 4: Priklady4.pdf
Príklady na 4. týždeň s riešeniami: Priklady4riesene.pdf


V prednáške 3.1 ukončíme kapitolu Limita a spojitosť.
Na druhej prednáške 3.2 začíname rozprávať o derivácii.
Na cvičeniach sa ešte venujeme téme limita a spojitosť.

Tu sú štúdijné materiály na tento týždeň:

Video prednášky:

Video Prednáška 3.1.
Video Prednáška 3.2

Textové prednášky:

Prednáška 3.1: Prednaska3-1.pdf
Prednáška 3.2: Prednaska3-2.pdf

Riešené video-príklady:
Riešené príklady 3

Neriešené príklady:
Príklady 3: Priklady3.pdf


Začíname kapitolu o Limita a spojitosť. Povieme, čo je to limita funkcie v bode, aké má vlastnosti, ako sa počíta.
Rozlíšime prípady, keď je limita číslo, a keď je nekonečná. Ako súvisí limita so spojitosťou funkcie, povieme v nasledujúcom týždni.

Tu sú štúdijné materiály na tento týždeň:

Video prednášky:

Video Prednáška 2.1.
Video Prednáška 2.2.

Textové prednášky:

Prednáška 2.1: Prednaska2-1.pdf
Prednáška 2.2: Prednaska2-2.pdf

Riešené video-príklady:
Riešené príklady 2

Neriešené príklady:
Príklady 2: Priklady2.pdf


V tomto týždni sa budeme zaoberať pojmom reálna funkcia, jej definíciou a základnými vlastnosťami.
Dôležitý je pojem bijekcie a inverznej funkcie.
Pripomenieme niektoré elementárne funkcie a ich grafy.

Tu sú štúdijné materiály na tento týždeň:

Video prednášky:
Video Prednáška 1.1
Video Prednáška 1.2

Textové prednášky:
Prednáška 1: Prednaska1.pdf
(na 1.týždeň je len jeden text prednášok)

Riešené video-príklady:

Riešené príklady sú z obdobia rokov 2021-22. Ak v nich zaznejú nejaké nematematické informácie, napríklad o bodovaní predmetu, termínoch a podobne, tieto sú neaktuálne.

Cviko_1.1, Cviko_1.2, Cviko_1.3,
Cviko_1.4, Cviko_1.5, Cviko_1.6,
Cviko_1.7, Cviko_1.8, Cviko_1.9.

Neriešené príklady:
Príklady 1: Priklady1.pdf


Stručná osnova predmetu (Harmonogram prednášok)

1. Pojem funkcie reálnej premennej. Definičný obor a obor hodnôt. Vlastnosti funkcie: parita, ohraničenosť, maximum, minimum, supremum, infimum. Bijektívna funkcia, inverzná funkcia.
2. Elementárne reálne funkcie, mocninová, exponenciálna, logaritmická, Trigonometrické a cyklometrické funkcie.
3. Limita a spojitosť funkcie. Konečné limity. Nevlastná limita. Limita v nevlastnom bode. Jednostranné limity.
4. Spojitosť. Vlastnosti spojitých funkcií na uzavretom intervale.
5. Pojem derivácie. Výpočet derivácie funkcie reálnej premennej. Geometrický význam derivácie, rovnica dotyčnice, prvý diferenciál.
6. Monotónnosť a lokálne extrémy. Vlastnosti diferencovateľnej funkcie na uzavretom intervale.
7. Derivácie vyšších rádov. Konvexnosť a konkávnosť. Extrémy a 2.derivácia. L‘Hospitalovo pravidlo.
8. Postupnosť ako funkcia na množine prirodzených čísel. Limita postupnosti. Vlastnosti. Postupnosť definovaná rekurentne.
9. Nekonečné rady. Pojem konvergencie. Geometrický rad. Kritériá konvergencie radov s nezápornými členmi.
10. Neurčitý integrál, definícia, elementárne integrály, metóda per partes a substitúcia.
11. Integrovanie racionálnych funkcii, rozklad na elementárne zlomky.
12. Určitý integrál (Riemannov), vzťah medzi integrálom a primitívnou funkciou, metódy integrovania, aplikácie určitého integrálu.

Literatúra

1. SATKO, L.; ŠULKA, R. Matematická analýza 1. Bratislava: SVŠT v Bratislave, 1988. 217 s.

2. ŠULKA, R.; MORAVSKÝ, L.; SATKO, L. Matematická analýza 1. Bratislava: Alfa, 1986. 389 s.

3. Glyn, J.: Modern engineering mathematics, Addison Wesley, 2008

4. Sabolová, M.; Satko, L.: Matematická Analýza I, Edičné stredisko STU, 2007 (Elektronický text dostupný na tejto strane).

5. Kačníková, T.; Sladká, S.: Matematická analýza 1 (Zbierka príkladov), skriptá EF STU, Bratislava 1994

6. Eliaš, J.; Horváth, J.; Kajan, J.: Zbierka úloh z vyššej matematiky, 2. a 4.diel; Alfa Bratislava 1966 resp 1979

Tu je elektronická verzia literatúry č. 4:

Študent učí študenta

Študenti, ktorí majú záujem o doučovanie matematiky v spolupráci so študentmi vyššieho ročníka sa môžu prihlásiť do projektu Študent učí študenta. Potrebné informácie nájdete tu:

Info 1: Info1.png
Info 2: Info2.png
Prihlasovanie: Prihlasovanie.png


Tabuľku hodnôt goniometrických funkcií a niektoré goniometrické identity nájdete tu:


Skúška

Podmienky absolvovania predmetu M1I.

Celkovo je z predmetu možné získať 100 bodov.
Tieto sú rozdelené nasledovne:
30 bodov možno získať počas semestra, 70 bodov bude možné získať na záverečnej skúške.

Body počas semestra budete môcť získať na testoch. Budú pozostávať z niekoľkých otázok alebo príkladov. Konanie testu Vám oznámime dopredu.
Predbežne plánujeme dva testy počas semestra, každý bude obsahovať príklady za cca 15 bodov.
Testy budú približne v šiestom a desiatom týždni semestra.

Záverečná skúška sa bude konať v termíne stanovenom v rozvrhu skúšok. Bude písomná a bude pozostávať z otázok a 4-5 príkladov.

Aby ste sa mohli zúčastniť na záverečnej skúške, musíte počas semestra získať aspoň 15 bodov a nemať žiadnu neospravedlnenú neúčasť na cvičení. Ak sa Vám túto podmienku nepodarí splniť, budete hodnotený známkou FX.

Celkové hodnotenie za predmet je dané súčtom bodov získaných za semester a na záverečnej skúške. Bodová škála pre jednotlivé známky je daná skúškovým poriadkom a je nasledovná:

V prípade známky FX na riadnom termíne skúšky môžete absolvovať jeden opravný termín skúšky. Body zo semestra sa Vám rátajú do opravného termínu nezmenené.

Podrobné informácie o obsahu skúšky, presnom počte príkladov a ich typoch sa dozviete pred koncom semestra a začiatkom skúšobného obdobia.