Matematika 1 / Aplikovaná Informatika

2025/2026 -- Zimný semester

Prednášajúci

doc. RNDr. Boris Rudolf, CSc., boris.rudolf[at]stuba.sk, miestnosť A - 403

Prednášky

Deň

miestnosť

Od

Do

Krúžky

Učiteľ

utorok

AB-300

10:00

11:40

všetky

B.Rudolf

štvrtok

AB-300

8:00

9:40

všetky

B.Rudolf

Cvičiaci

* Mgr. Katarína Hriňáková, PhD., miestnosť A - 409
* Mgr. Ivona Hrivová, PhD.,
* Mgr. Lucia Pospíšilová Škripková, PhD., miestnosť A - 406

Cvičenia

Deň

miestnosť

Od

Do

Krúžok

Učiteľ

streda

DE-150

15:00

16:40

API 5

L.Pospíšilová Škripková

streda

DE-150

17:00

18:40

API 1

L.Pospíšilová Škripková

streda

DE-150

17:00

18:40

API 9

L.Pospíšilová Škripková

streda

E-021

15:00

16:40

API 6

I. Hrivová

streda

E-021

17:00

18:40

API 7

I. Hrivová

piatok

DE-300

9:00

10:40

API 4

L.Pospíšilová Škripková

piatok

DE-300

11:00

12:40

API 3

L.Pospíšilová Škripková

piatok

A-419

9:00

10:40

API 2

K.Hriňáková

piatok

A-419

11:00

12:40

API 8

K.Hriňáková

Nové Oznamy

Tu budú počas semestra zverejňované oznamy pre študentov.

Neaktuálne oznamy budú postupne presunuté do dolnej časti stránky.


Prednášky a cvičenia

Na tomto mieste budú prístupné texty prednášok, ukážky riešených príkladov a úlohy na prepočítanie, vždy na daný týždeň semestra.
V každom týždni sú dve dvojhodinové prednášky a jedno dvojhodinové cvičenie. (Vyučovacia hodina má 50 minút.)
Preto aj v materiáloch sú väčšinou na daný týždeň dve prednášky, vo videách aj v textovej verzii.

V tomto týždni sa budeme zaoberať pojmom reálna funkcia, jej definíciou a základnými vlastnosťami.
Dôležitý je pojem bijekcie a inverznej funkcie.
Pripomenieme niektoré elementárne funkcie a ich grafy.

Tu sú štúdijné materiály na tento týždeň:

Video prednášky:
Video Prednáška 1.1
Video Prednáška 1.2

Textové prednášky:
Prednáška 1: Prednaska1.pdf
(na 1.týždeň je len jeden text prednášok)

Riešené video-príklady:

Riešené príklady sú z obdobia rokov 2021-22. Ak v nich zaznejú nejaké nematematické informácie, napríklad o bodovaní predmetu, termínoch a podobne, tieto sú neaktuálne.

Cviko_1.1, Cviko_1.2, Cviko_1.3,
Cviko_1.4, Cviko_1.5, Cviko_1.6,
Cviko_1.7, Cviko_1.8, Cviko_1.9.

Neriešené príklady:
Príklady 1: Priklady1.pdf


Stručná osnova predmetu (Harmonogram prednášok)

1. Pojem funkcie reálnej premennej. Definičný obor a obor hodnôt. Vlastnosti funkcie: parita, ohraničenosť, maximum, minimum, supremum, infimum. Bijektívna funkcia, inverzná funkcia.
2. Elementárne reálne funkcie, mocninová, exponenciálna, logaritmická, Trigonometrické a cyklometrické funkcie.
3. Limita a spojitosť funkcie. Konečné limity. Nevlastná limita. Limita v nevlastnom bode. Jednostranné limity.
4. Spojitosť. Vlastnosti spojitých funkcií na uzavretom intervale.
5. Pojem derivácie. Výpočet derivácie funkcie reálnej premennej. Geometrický význam derivácie, rovnica dotyčnice, prvý diferenciál.
6. Monotónnosť a lokálne extrémy. Vlastnosti diferencovateľnej funkcie na uzavretom intervale.
7. Derivácie vyšších rádov. Konvexnosť a konkávnosť. Extrémy a 2.derivácia. L‘Hospitalovo pravidlo.
8. Postupnosť ako funkcia na množine prirodzených čísel. Limita postupnosti. Vlastnosti. Postupnosť definovaná rekurentne.
9. Nekonečné rady. Pojem konvergencie. Geometrický rad. Kritériá konvergencie radov s nezápornými členmi.
10. Neurčitý integrál, definícia, elementárne integrály, metóda per partes a substitúcia.
11. Integrovanie racionálnych funkcii, rozklad na elementárne zlomky.
12. Určitý integrál (Riemannov), vzťah medzi integrálom a primitívnou funkciou, metódy integrovania, aplikácie určitého integrálu.

Literatúra

1. SATKO, L.; ŠULKA, R. Matematická analýza 1. Bratislava: SVŠT v Bratislave, 1988. 217 s.

2. ŠULKA, R.; MORAVSKÝ, L.; SATKO, L. Matematická analýza 1. Bratislava: Alfa, 1986. 389 s.

3. Glyn, J.: Modern engineering mathematics, Addison Wesley, 2008

4. Sabolová, M.; Satko, L.: Matematická Analýza I, Edičné stredisko STU, 2007 (Elektronický text dostupný na tejto strane).

5. Kačníková, T.; Sladká, S.: Matematická analýza 1 (Zbierka príkladov), skriptá EF STU, Bratislava 1994

6. Eliaš, J.; Horváth, J.; Kajan, J.: Zbierka úloh z vyššej matematiky, 2. a 4.diel; Alfa Bratislava 1966 resp 1979

Tu je elektronická verzia literatúry č. 4:

Staršie Oznamy


Tabuľku hodnôt goniometrických funkcií a niektoré goniometrické identity nájdete tu:


Skúška

Podmienky absolvovania predmetu M1I.

Celkovo je z predmetu možné získať 100 bodov.
Tieto sú rozdelené nasledovne:
30 bodov možno získať počas semestra, 70 bodov bude možné získať na záverečnej skúške.

Body počas semestra budete môcť získať na testoch. Budú pozostávať z niekoľkých otázok alebo príkladov. Konanie testu Vám oznámime dopredu.
Predbežne plánujeme dva testy počas semestra, každý bude obsahovať príklady za cca 15 bodov.
Testy budú približne v šiestom a desiatom týždni semestra.

Záverečná skúška sa bude konať v termíne stanovenom v rozvrhu skúšok. Bude písomná a bude pozostávať z otázok a 4-5 príkladov.

Aby ste sa mohli zúčastniť na záverečnej skúške, musíte počas semestra získať aspoň 15 bodov a nemať žiadnu neospravedlnenú neúčasť na cvičení. Ak sa Vám túto podmienku nepodarí splniť, budete hodnotený známkou FX.

Celkové hodnotenie za predmet je dané súčtom bodov získaných za semester a na záverečnej skúške. Bodová škála pre jednotlivé známky je daná skúškovým poriadkom a je nasledovná:

V prípade známky FX na riadnom termíne skúšky môžete absolvovať jeden opravný termín skúšky. Body zo semestra sa Vám rátajú do opravného termínu nezmenené.

Podrobné informácie o obsahu skúšky, počte príkladov a ich typoch sa dozviete pred koncom semestra a začiatkom skúšobného obdobia.

Matematika1/ParalelkaA (last edited 2025-09-12 06:45:44 by BorisRudolf)