Matematika 3E

2019/2020 -- zimný semester, rozsah 2-2

Prednášajúci

Cvičiaci

Konzultačné hodiny:

štvrtok 13.00-14.00

miestnosť A-409

ROZVRH

Deň

Miestnosť

Od

Do

Prednáška

utorok

CD-300

08:00

10:00

Cvičenia

utorok

DE-300

10:00

12:00

Stručná osnova predmetu

Vybrané časti z krivkového integrálu

1. Krivkový integrál zo skalárnej a vektorovej funkcie.

2. Greenova veta.

Diferenciálny a integrálny počet komplexnej funkcie komplexnej premennej

3. Komplexné čísla a ich vlastnosti.

4. Limita a spojitosť komplexnej funkcie komplexnej premennej.

5. Derivácia funkcie komplexnej premennej, Cauchyho-Riemannove rovnosti.

6. Analytické (holomorfné) funkcie, harmonické funkcie.

7. Integrál z funkcie komplexnej premennej. Cauchyho integrálna veta a formula.

8. Taylorov a Laurentov rad.

9. Singulárne body, rezíduá funkcie komplexnej premennej.

10. Obyčajná lineárna diferenciálna rovnica druhého rádu (ODR) s konštantnými koeficientmi a metódy jej riešenia.

11. Laplaceova transformácia – definícia, vlastnosti a aplikácie pri riešení ODR a elektrických obvodov.

12. Sumarizácia a opakovanie

Otázky ku skúške

Rámcové otázky ku skúške z Matematiky 3E.

1. Definícia krivky a krivkového integrálu zo skalárnej a vektorovej funkcie.

2. Greenova veta.

3. Vlastnosti a formy komplexných čísel, n-tá odmocnina komplexného čísla.

4. Postupnosti a rady komplexných čísel.

5. Rady komplexných funkcií, bodová a rovnomerná konvergencia.

6. Limita, spojitosť, reálna a imaginárna časť komplexnej funkcie komplexnej premennej.

7. Derivácia komplexnej funkcie komplexnej premennej, Cauchyho-Riemannove rovnosti, analytická (holomorfná) funkcia, harmonicka funkcia.

8. Integrál z funkcie komplexnej premennej po krivke (definícia, výpočet).

9. Cauchyho integrálna veta a formula.

10. Definícia Taylorovho radu a veta o rozvoji analytickej funkcie do TR.

11. Definícia singulárnych bodov komplexnej funkcie komplexnej premennej a ich vlastnosti.

12. Definícia Laurentovho radu a veta o rozvoji analytickej funkcie do LR, súvis LR so singulárnymi bodmi komplexnej funkcie komplexnej premennej.

13. Rezíduá funkcie komplexnej premennej, Cauchyho veta o rezíduách.

14. Obyčajná lineárna diferenciálna rovnica druhého rádu (ODR) s konštantnými koeficientmi a metódy jej riešenia.

15. Definícia a vlastnosti Laplaceovej transformácie.

16. Aplikácie LT pri riešení ODR a elektrických obvodov.

Podmienky pre zápočet a skúšku

* Cvičenie je povinné, ospravedlnenie zo závažných dôvodov je možné dopredu, alebo najneskôr do piatich dní a doložiť patričným dokladom na študijnom oddelení.

* Celkový počet bodov na skúške z M3 je 100.

* Počas semestra v piatom a deviatom týždni sa píše dvadsaťbodová 40 minútová písomka. Náhradná písomka v dvanástom týždni semestra, alebo v prvom týždni skúškového obdobia, zásadne iba pre študentov ospravedlnených na pedagogickom oddelení doložené patričným dokladom. (nariadenie dekana)

* Zápočet získava študent bez neospravedlnenej neúčasti na cvičeniach a počas semestra získal aspoň 20 bodov.

* Nutnou podmienkou účasti na skúške z M3E je zápočet.

* Skúška je písomná. Pozostáva z teoretických otázok a príkladov.

* Neúčasť na skúške ako aj na každej zápočtovej písomke a každom cvičení je nutné (nariadenie dekana) ospravedlniť na pedagogickom oddelení najneskôr do piatich dní a doložiť patričným dokladom. Pokiaľ sa študent neospravedlní do daného termínu, nemá nárok na náhradný termín skúšky.

* Na písomkách a na skúške sa nepoužívajú kalkulačky.

* Podvádzanie pri skúške má za následok hodnotenie nevyhovel.

Prednášky, príklady a cvičenia

Tabuľka Laplaceovej transformácie

Oznamy

Prvá zápočtová písomka z M3E bude dňa 22.10.2019 (utorok) od 9.00 do 9.50 v CD-300 a DE-300. Ľ. Marko

Matematika3/program1 (last edited 2019-10-16 08:54:38 by LubomirMarko)