Matematika 1 (opakovaná)/ Aplikovaná Informatika

2022/2023 -- Letný semester

Prednášajúci a cvičiaci

doc. RNDr. Boris Rudolf, CSc., boris.rudolf[at]stuba.sk, miestnosť A - 403

ROZVRH

Deň

Miestnosť

Od

Do

Učiteľ

Prednáška

utorok

AB-300

15:00

16:40

B.Rudolf

Cvičenie

štvrtok

AB-300

13:00

14:40

B.Rudolf

Prednáška

piatok

AB-300

10:00

11:40

B.Rudolf

Podmienky účasti na skúške

Podmienkou účasti na skúške je získať aspoň 15 bodov počas semestra.
Rozdelenie bodov je 30 bodov počas semestra, tieto môžete získať na priebežných testoch, a 70 bodov na záverečnej skúške.

Prednášky a cvičenia

Na tomto mieste budú prístupné videá prednášok, texty prednášok, ukážky riešených príkladov a úlohy na prepočítanie, vždy na daný týždeň semestra.


V tomto týždni sa budeme zaoberať pojmom reálna funkcia, jej definíciou a základnými vlastnosťami.
Dôležitý je pojem bijekcie a pojem inverznej funkcie.
Pripomenieme niektoré elementárne funkcie a ich grafy.

Tu sú štúdijné materiály na tento týždeň:

Video prednášky:
Video Prednáška 1.1
Video Prednáška 1.2

Textové prednášky:
Prednáška 1: Prednaska1.pdf
(na 1.týždeň je len jeden text prednášok)

Príklady na tento týždeň:
Príklady 1: Priklady1.pdf

Riešené video-príklady:
Cviko_1.1, Cviko_1.2, Cviko_1.3,
Cviko_1.4, Cviko_1.5, Cviko_1.6,
Cviko_1.7, Cviko_1.8, Cviko_1.9.

Zápis z cvičenia 1:poznámky1ls.pdf


Stručná osnova predmetu (Harmonogram prednášok)

  1. Pojem funkcie reálnej premennej. Vlastnosti funkcie, parita, ohraničenosť, maximum, minimum, supremum, infimum, inverzná funkcia.
  2. Elementárne reálne funkcie, mocninová, exponenciálna, logaritmická, Trigonometrické a cyklometrické funkcie.
  3. Limita a spojitosť funkcie. Konečné limity. Nevlastná limita. Limita v nevlastnom bode. Jednostranné limity.
  4. Spojitosť. Vlastnosti spojitých funkcií na uzavretom intervale.
  5. Pojem derivácie. Výpočet derivácie funkcie reálnej premennej. Geometrický význam derivácie, prvý diferenciál.
  6. Monotónnosť a lokálne extrémy. Vlastnosti diferencovateľnej funkcie na uzavretom intervale.
  7. Derivácie vyšších rádov. Konvexnosť a konkávnosť. Extrémy a 2.derivácia. L‘Hospitalovo pravidlo.
  8. Postupnosť ako funkcia na množine prirodzených čísel. Limita postupnosti. Vlastnosti. Postupnosť definovaná rekurentne.
  9. Nekonečné rady. Pojem konvergencie. Geometrický rad. Kritériá konvergencie radov s nezápornými členmi.
  10. Neurčitý integrál, definícia, elementárne integrály, metóda per partes a substitúcia.
  11. Integrovanie racionálnych funkcii, rozklad na elementárne zlomky.
  12. Určitý integrál (Riemannov), vzťah medzi integrálom a primitívnou funkciou, metódy integrovania, aplikácie určitého integrálu.

Literatúra

  1. SATKO, L.; ŠULKA, R. Matematická analýza 1. Bratislava: SVŠT v Bratislave, 1988. 217 s.
  2. ŠULKA, R.; MORAVSKÝ, L.; SATKO, L. Matematická analýza 1. Bratislava: Alfa, 1986. 389 s.
  3. Glyn, J.: Modern engineering mathematics, Addison Wesley, 2008
  4. Sabolová, M.; Satko, L.: Matematická Analýza I, Edičné stredisko STU, 2007 (Elektronický text dostupný na tejto strane).
  5. Kačníková, T.; Sladká, S.: Matematická analýza 1 (Zbierka príkladov), skriptá EF STU, Bratislava 1994
  6. Eliaš, J.; Horváth, J.; Kajan, J.: Zbierka úloh z vyššej matematiky, 2.diel; Alfa Bratislava 1966

Prednášky

Tu je elektronická verzia literatúry č. 4:

Matematická analýza - pdf

Oznamy

Cvičenia

Skúste výpočty a prípadne kreslenie grafov použitím https://www.wolframalpha.com/examples/Math.html

Tabuľku hodnôt goniometrických funkcií a niektoré goniometrické identity nájdete tu:

Goniometrické funkcie

Fórum (stránky doporučené študentmi)

Tu môžete nájsť niektoré typy príkladov s postupom riešenia:

http://www.studopory.vsb.cz/studijnimaterialy/Sbirka_uloh/video/obsah.html

V tomto semestri sú zaujímavé kapitoly 3, 4, 5, 6.

Matematika1Opakovana/Matematika1OP/ParalelkaA (last edited 2023-02-03 12:15:09 by BorisRudolf)