Attachment 'latex_82221891a5730e16f98c2b9e19a8ccf76c4ea7fa_p1.png' does not exist!

Clear message

Lineárna algebra 2

pre študijný program Aplikovaná informatika

2024/2025 letný semester

Informačný list

info2024.pdf

Pozor

Základným zdrojom pre Lineárnu algebru 2 sú prednášky a cvičenia. Videá a texty sú iba doplnkový zdroj, nie je garantované, že obsahujú všetko a vo vhodnej forme, čo bude požadované pri priebežnom hodnotení a na skúške.

Obsah

  1. Pole $(\mathcal{Z}_p,\oplus_p,\odot_p)$
    prednáška text: prednaska1.pdf, strany 1, 5 - 7, 13
    prednáška video: https://youtu.be/RYShvddtXx0 a https://youtu.be/UuxRy0ySiI8
    cvičenie text: prikladyLA2.pdf, týždeň 2, príklady 1 - 5, 7 - 8, týždeň 3, príklad 6, časti b - d, týždeň 4, príklady 1 - 2, 5
    cvičenie video: https://youtu.be/WTn10sOhL88 a https://youtu.be/E1u89_4PAz4
    rozdiely: tabuľka pre rozšírený Euklidov algoritmus má 4 stĺpce, pri riadkovo ekvivalentných úpravách sa nemôže vynechávať ani nulový riadok, pri riešení sústavy lineárnych rovníc sa matica upravuje do redukovaného stupňovitého tvaru, riešenie sústavy lineárnych rovníc sa zapisuje do stĺpca

  2. Pole $(\mathcal{Z}_p[x],\oplus_p,\odot_p)/_{(p(x))}$
    prednáška text: prednaska1.pdf, strany 8 - 10
    prednáška video: https://youtu.be/z94noc6YFAk a https://youtu.be/Hz4GsqVIaao a https://youtu.be/UuxRy0ySiI8
    cvičenie text: prikladyLA2.pdf, týždeň 2, príklady 6, časť b, 9 - 10, týždeň 3, príklady 1 - 5
    cvičenie video: https://youtu.be/bwksRJg8mCc a https://youtu.be/RGep5pY-72M a https://youtu.be/E1u89_4PAz4
    rozdiely: množina všetkých polynómov nad $\mathcal{R}$ v neurčitej $x$ je označená $\mathcal{R}[x]$, tabuľka pre rozšírený Euklidov algoritmus má 4 stĺpce

  3. Pole $(\mathcal{C},+,\cdot)$
    prednáška text: prednaska1.pdf, strany 1 - 5
    prednáška video: https://youtu.be/Ja7oYlKlIwU a https://youtu.be/8kZk1FA82gE a https://youtu.be/saXHS6yLwms
    cvicenie text: priklady1.pdf, kapitola 5
    cvicenie video: N/A
    rozdiely:

  4. Sústava lineárnych rovníc nad okruhom $(\mathcal{Z},+,\cdot)$
    prednáška text: prednaska1a.pdf
    prednáška video: https://youtu.be/UuxRy0ySiI8 a https://youtu.be/zlVjszq8HRA
    cvičenie text: prikladyLA2.pdf, týždeň 4, príklad 3
    cvičenie video: https://youtu.be/tIivbL7qnJk
    rozdiely: pri riadkovo ekvivalentných úpravách sa nemôže vynechávať ani nulový riadok, riešenie sústavy lineárnych rovníc sa zapisuje do stĺpca, Hermitov tvar matice nemusí spĺňať hodnosť matice = počet riadkov < počet stĺpcov, pred-Smithov tvar matice, Smithov kanonický tvar matice

  5. Lineárne zobrazenie
    prednáška text: prednaska1.pdf, strany 21 - 24
    prednáška video: https://youtu.be/GQ3zfpvBz0Q
    cvičenie text: prikladyLA2.pdf, týždeň 6, príklady 1, 3, týždeň 7, príklady 1 - 2
    cvičenie video: https://youtu.be/KcCSe5xBCrg
    rozdiely: lineárne zobrazenie sa nazýva lineárne zobrazenie, obraz $V$ v lineárnom zobrazení $L\colon V\to W$ sa označuje $Im(L)$, vektor sa zapisuje do stĺpca, matica lineárneho zobrazenia $L\colon V\to W$ s bázou $\mathcal{B}_V$ vo $(V,+,\cdot)$ a bázou $\mathcal{B}_W$ vo $(W,+,\cdot)$ sa označuje $A_{L,\mathcal{B}_W\mathcal{B}_V}$

  6. Podobnosť matíc, vlastné číslo matice, vlastný vektor matice, charakteristický polynóm matice
    prednáška text: predn2.pdf, strany 4, 6 - 7
    prednáška video: https://youtu.be/UvOFYLZBv0k a https://youtu.be/VPr_b_6Ijzc
    cvičenie text: prikladyLA2.pdf, týždeň 7, príklady 1, 3, týždeň 8, príklady 1 - 2
    cvičenie video: https://youtu.be/upuCd9MzF48 a https://youtu.be/aHUYI63EmKw
    rozdiely: vektor sa zapisuje do stĺpca, charakteristický polynóm matice $A$ môže byť aj $|x\cdot I-A|$, pri riadkovo ekvivalentných úpravách sa nemôže vynechávať ani nulový riadok

  7. Jordanov kanonický tvar matice
    prednáška text: predn2.pdf, strany 7 - 10
    prednáška video: https://youtu.be/VPr_b_6Ijzc a https://youtu.be/Y0iPM9DxAGI
    cvičenie text: prikladyLA2.pdf, týždeň 8, príklad 4, týždeň 9, príklad 1
    cvičenie video: https://youtu.be/aHUYI63EmKw a https://youtu.be/HjO8QYFyDcM
    rozdiely: Jordanov blok má $1$ nad diagonálou, do matice prechodu od novej bázy zo zovšeobecnených vlastných vektorov k starej báze sa reťazec zovšeobecnených vlastných vektorov $v_1\leftarrow v_2\leftarrow v_3\leftarrow\cdots\leftarrow v_k$ zapisuje zľava od vlasného vektoru aka $1$-zovšeobecneného vlastného vektoru $v_1$ doprava po $k$-zovšeobecnený vlasný vektor $v_k$

  8. Minimálny polynóm matice, minimálny polynóm vektoru vzhľadom na maticu, matica pridružená k polynómu
    prednáška text: predn2.pdf, strany 1 - 3
    prednáška video: https://youtu.be/UvOFYLZBv0k a https://youtu.be/Y0iPM9DxAGI a https://youtu.be/VPr_b_6Ijzc
    cvičenie text: prikladyLA2.pdf, týždeň 7, príklady 5 - 8, týždeň 8, príklad 3
    cvičenie video: https://youtu.be/upuCd9MzF48 a https://youtu.be/aHUYI63EmKw
    rozdiely: matica pridružená k polynómu $f(x)$ stupňa $n$$1$ nad diagonálou a koeficienty normovaného polynómu asociovaného s $f(x)$ okrem vedúceho v stĺpci $1$ pričom v riadku $1$ je koeficient pri $x^{n-1}$ a v riadku $n$ je koeficient pri $x^0$

  9. Metóda najmenších štvorcov, ortonormálna matica, ortonormálna podobnosť matíc
    prednáška text: predn3.pdf, strany 1 - 5
    prednáška video: https://youtu.be/mrI6qAWy0iI
    cvičenie text: prikladyLA2.pdf, týždeň 10, príklady 1 - 4, týždeň 11 - 12, príklad 1
    cvičenie video: https://youtu.be/yN9iUoRFIeM
    rozdiely: vektor sa zapisuje do stĺpca, neznáme koeficienty aproximačného polynómu zodpovedajú stĺpcom matice príslušnej sútavy lineárncyh rovníc v poradí zľava doprava $f_0$, $f_1$, $f_2$, ..., $f_n$

  10. Zhodné zobrazenie v $(\mathcal{R}^2,+,\cdot)$, zhodné zobrazenie v $(\mathcal{R}^3,+,\cdot)$
    prednáška text:
    prednáška video: https://youtu.be/rfHMNLuqudM
    cvičenie text: prikladyLA2.pdf, týždeň 11 - 12, príklady 2 - 4
    cvičenie video: https://youtu.be/gzbHSHVUU-E
    rozdiely: vektor sa zapisuje do stĺpca

  11. Bilineárna forma, kvadratická forma, kongruentnosť matíc
    prednáška text:
    prednáška video:
    cvičenie text:
    cvičenie video:
    rozdiely:

  12. Kvadrika v $(\mathcal{R}^2,+,\cdot)$, kvadrika v $(\mathcal{R}^3,+,\cdot)$
    prednáška text: predn4.pdf, geometria.pdf, strany 32 - 43, predn3.pdf, strany 3 - 4, http://thales.doa.fmph.uniba.sk/zlatos/la/zlatos_LAG.pdf, strany 471 - 482
    prednáška video: https://youtu.be/-Rf0BiKrKFg
    cvicenie text: priklady1.pdf, kapitola 11
    cvicenie video: https://youtu.be/rjmmOOCUhpI
    rozdiely: vektor sa zapisuje do stĺpca

  13. Príprava na skúšku
    skúšky z rokov 2023 a 2024 a Literatúra\M. Zajac: Príklady Lineárna algebra 2\zbierkauloh.pdf

Chyby

Objavené chyby:

Literatúra

  1. P. Zlatoš: Lineárna algebra a geometria, Albert Marenčin PT, Bratislava, 2011.

    http://thales.doa.fmph.uniba.sk/zlatos/la/zlatos_LAG.pdf (kniha)
    http://thales.doa.fmph.uniba.sk/zlatos/la/LAG_A4.pdf (A4)

  2. T. Katriňák, M. Gavalec, E. Gedeonová, J. Smítal: Algebra a teoretická aritmetika 1, Alfa, Bratislava, 1985 & Univerzita Komenského, Bratislava, 1995 & Univerzita Komenského, Bratislava, 1999.

  3. J. Guričan: Vybrané kapitoly z algebry.

    http://thales.doa.fmph.uniba.sk/gurican/vka/vka2014_09_24.pdf

  4. M. Hejný, V. Zaťko, P. Kršňák: Geometria 1, Slovenské pedagogické nakladateľstvo, Bratislava, 1985.
  5. M. Zajac: Príklady Lineárna algebra 2.

    prikladyLA2.ps, prikladyLA2.pdf (7.4.2021)

  6. M. Zajac: Zbierka úloh Lineárna algebra 2.

    zbierkauloh.ps, zbierkauloh.pdf
    jordanovtvar.ps, jordanovtvar.pdf

  7. M. Zajac: Prednášky Lineárna algebra 2.

    prednaska1.ps, prednaska1.pdf (27.4.2020)
    prednaska1a.ps, prednaska1a.pdf (13.3.2020)
    https://xpopikt-didactic-application.herokuapp.com/
    predn2.ps, predn2.pdf (27.4.2020)
    predn3.ps, predn3.pdf (5.6.2020)

  8. V. Havel, J. Holenda: Lineární algebra. ALFA, Bratislava, 1984.
  9. Š. Schwarz: Základy náuky o riešení rovníc, SAV, Bratislava, 1968.
  10. J. Galanová, J. Gatial, P., Kaprálik: Lineárna algebra, STU, Bratislava, 2002.
  11. J. Glyn: Advanced Modern Engineering Mathematics, Addison-Wesey, 1992.
  12. C. D. Meyer: Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

Rozvrh

Deň

Od

Do

Miestnosť

Krúžok

Vyučujúci

Kontakt

Konzultácie k prednáškam: podľa individuálnej dohody s prednášajúcim
Konzultácie k cvičeniam: podľa individuálnej dohody s konkrétnym cvičiacim

Hodnotenie

Časti hodnotenia:

Obsah:

Bodovanie:

Pravidlá bodovania:

Úspešnosť požadovaná na absolvovanie predmetu:

Váha pri výpočte známky:

Známka - bodíky z intervalu [0;120+bonus] sa prepočítajú na body z intervalu [0;100+bonus]:

Neúčasť/neúspešosť na priebežnom honotení:

Neúčasť/neúspešosť na skúške:

Priebeh priebežného hodnotenia a skúšky

Ak niekto potrebuje pri Priebežnom hodnotení a Skúške špeciálne podmienky, napríklad zo zdravotných dôvodov, prosím, napíšte mi e-mail na karina.chuda@stuba.sk .

Na stole na viditeľnom mieste treba mať:

Okrem toho môže byť na stole iba (nedodržanie má za následok hodnotenie Fx bez možnosti opravy v tomto akademickom roku):

Smie sa používať:

Nesmie používať a nesmie byť v dosahu (nedodržanie má za následok hodnotenie Fx bez možnosti opravy v tomto akademickom roku):

Ďalšie pokyny:

Termíny

Priebežné hodnotenie:

Skúška: