Examples of non-hyperreflexive reflexive spaces of operators

Michal Zajac

8th WFA, September 5-10, Nemecká

Notation.

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators
- reflexive closure of $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
$\operatorname{Ref} \mathcal{S}=\bigcap_{x \in \mathcal{H}}\left\{T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) ; \quad T_{x} \in[\mathcal{S} x]\right\}$ [$\mathcal{S} x]$ is closed linear span of $\mathcal{S} x=\{S x ; S \in \mathcal{S}\}$.

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators
- reflexive closure of $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
$\operatorname{Ref} \mathcal{S}=\bigcap_{x \in \mathcal{H}}\left\{T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) ; \quad T_{x} \in[\mathcal{S} x]\right\}$ [$\mathcal{S x}$] is closed linear span of $\mathcal{S} x=\{S x ; S \in \mathcal{S}\}$.
For $T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
- $\mathrm{d}(T, \mathcal{S})=\inf _{S \in \mathcal{S}}\|T-S\|=\inf _{S \in \mathcal{S}} \sup _{x \in \mathcal{H},\|x\| \leq 1}\left\|T x-S_{x}\right\|$
- $\alpha(T, \mathcal{S})=\sup _{x \in \mathcal{H},\|x\| \leq 1} \inf _{S \in \mathcal{S}}\|T x-S x\|$.

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators
- reflexive closure of $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
$\operatorname{Ref} \mathcal{S}=\bigcap_{x \in \mathcal{H}}\left\{T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) ; \quad T_{x} \in[\mathcal{S} x]\right\}$ [$\mathcal{S x}$] is closed linear span of $\mathcal{S} x=\{S x ; S \in \mathcal{S}\}$.
For $T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
- $\mathrm{d}(T, \mathcal{S})=\inf _{S \in \mathcal{S}}\|T-S\|=\inf _{S \in \mathcal{S}} \sup _{x \in \mathcal{H},\|x\| \leq 1}\|T x-S x\|$
- $\alpha(T, \mathcal{S})=\sup _{x \in \mathcal{H},\|x\| \leq 1} \inf _{S \in \mathcal{S}}\|T x-S x\|$.

Definition
A (WOT closed subspace) $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ is said to be reflexive if $\operatorname{Ref} \mathcal{S}=\mathcal{S}$ and it is called hyperreflexive if $\exists c \geq 1$ such that

$$
\begin{equation*}
\mathrm{d}(T, \mathcal{S}) \leq c \alpha(T, \mathcal{S}) \quad \forall T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) \tag{1}
\end{equation*}
$$

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators
- reflexive closure of $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
$\operatorname{Ref} \mathcal{S}=\bigcap_{x \in \mathcal{H}}\left\{T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) ; \quad T_{x} \in[\mathcal{S} x]\right\}$ [$\mathcal{S x}$] is closed linear span of $\mathcal{S} x=\{S x ; S \in \mathcal{S}\}$.
For $T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
- $\mathrm{d}(T, \mathcal{S})=\inf _{S \in \mathcal{S}}\|T-S\|=\inf _{S \in \mathcal{S}} \sup _{x \in \mathcal{H},\|x\| \leq 1}\|T x-S x\|$
- $\alpha(T, \mathcal{S})=\sup _{x \in \mathcal{H},\|x\| \leq 1} \inf _{S \in \mathcal{S}}\|T x-S x\|$.

Definition
A (WOT closed subspace) $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ is said to be reflexive if $\operatorname{Ref} \mathcal{S}=\mathcal{S}$ and it is called hyperreflexive if $\exists c \geq 1$ such that

$$
\begin{equation*}
\mathrm{d}(T, \mathcal{S}) \leq c \alpha(T, \mathcal{S}) \quad \forall T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) \tag{1}
\end{equation*}
$$

Minimal such $c, \kappa(\mathcal{S})$ is the hyperreflexivity constant of \mathcal{S}.

Notation.

- $\mathcal{H}, \mathcal{H}^{\prime}$ - complex separable Hilbert spaces (Banach spaces)
- $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right), \mathcal{L}(\mathcal{H}, \mathcal{H})=\mathcal{L}(\mathcal{H})$ - bounded linear operators
- reflexive closure of $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
$\operatorname{Ref} \mathcal{S}=\bigcap_{x \in \mathcal{H}}\left\{T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) ; \quad T_{x} \in[\mathcal{S} x]\right\}$ [$\mathcal{S x}$] is closed linear span of $\mathcal{S} x=\{S x ; S \in \mathcal{S}\}$.
For $T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$:
- $\mathrm{d}(T, \mathcal{S})=\inf _{S \in \mathcal{S}}\|T-S\|=\inf _{S \in \mathcal{S}} \sup _{x \in \mathcal{H},\|x\| \leq 1}\|T x-S x\|$
- $\alpha(T, \mathcal{S})=\sup _{x \in \mathcal{H},\|x\| \leq 1} \inf _{S \in \mathcal{S}}\|T x-S x\|$.

Definition
A (WOT closed subspace) $\mathcal{S} \subseteq \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ is said to be reflexive if $\operatorname{Ref} \mathcal{S}=\mathcal{S}$ and it is called hyperreflexive if $\exists c \geq 1$ such that

$$
\begin{equation*}
\mathrm{d}(T, \mathcal{S}) \leq c \alpha(T, \mathcal{S}) \quad \forall T \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) \tag{1}
\end{equation*}
$$

Minimal such $c, \kappa(\mathcal{S})$ is the hyperreflexivity constant of \mathcal{S}.
$T \in \mathcal{L}(\mathcal{H})$ is (hyper)reflexive if so is Alg T.
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity.
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973)
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985)
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985).
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
(iii) $\alpha(T, \mathcal{S})=\sup \{\|Q T P\|: P, Q$ projections, $Q \mathcal{S} P=\{0\}\}$,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
(iii) $\alpha(T, \mathcal{S})=\sup \{\|Q T P\|: P, Q$ projections, $Q \mathcal{S} P=\{0\}\}$,
(iv) $\alpha(T, \mathcal{S})=\sup \{|(T x, y)|:\|x\|=\|y\|=1,(S x, y)=0, S \in \mathcal{S}\}$,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
(iii) $\alpha(T, \mathcal{S})=\sup \{\|Q T P\|: P, Q$ projections, $Q \mathcal{S} P=\{0\}\}$,
(iv) $\alpha(T, \mathcal{S})=\sup \{|(T x, y)|:\|x\|=\|y\|=1,(S x, y)=0, S \in \mathcal{S}\}$,
(v) reflexivity is preserved by quasi-similarity of subspaces, hyperreflexivity is not preserved,
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity. Reflexive algebras: Sarason (1966), subspaces: Shuliman (1973) hyperreflexive algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
(iii) $\alpha(T, \mathcal{S})=\sup \{\|Q T P\|: P, Q$ projections, $Q \mathcal{S} P=\{0\}\}$,
(iv) $\alpha(T, \mathcal{S})=\sup \{|(T x, y)|:\|x\|=\|y\|=1,(S x, y)=0, S \in \mathcal{S}\}$,
(v) reflexivity is preserved by quasi-similarity of subspaces, hyperreflexivity is not preserved,
(vi) both are preserved by similarity.
$T \in \operatorname{Ref} \mathcal{S} \Longleftrightarrow \alpha(T, \mathcal{S})=0$, so hyperrefl. \Longrightarrow reflexivity.
Reflexive
algebras: Sarason (1966), subspaces: Shulman (1973)
hyperreflexive
algebras: Arveson (1975), subspaces: Kraus-Larson (1985) the $1^{\text {st }}$ reflexive but not hyperrefl. space: Kraus-Larson (1985). It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that
(i) $\alpha(T, \mathcal{S}) \leq \mathrm{d}(T, \mathcal{S})$,
(ii) $\operatorname{Ref} \mathcal{S}$ is a WOT-closed subspace of $\mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$,
(iii) $\alpha(T, \mathcal{S})=\sup \{\|Q T P\|: P, Q$ projections, $Q \mathcal{S} P=\{0\}\}$,
(iv) $\alpha(T, \mathcal{S})=\sup \{|(T x, y)|:\|x\|=\|y\|=1,(S x, y)=0, S \in \mathcal{S}\}$,
(v) reflexivity is preserved by quasi-similarity of subspaces, hyperreflexivity is not preserved,
(vi) both are preserved by similarity.

In the following proposition (vi) is stated more precisely:

Proposition (Bessonov-Bračič-Zajac 2011)

Let X and y be complex Banach spaces and let $\mathcal{S} \subseteq \mathcal{L}(X)$ be a hyperreflexive subspace of operators. If $A \in \mathcal{L}(X, y)$ and
$B \in \mathcal{L}(y, X)$ are invertible operators, then $A \mathcal{S} B \subseteq \mathcal{L}(y)$ is a hyperreflexive subspace and

Proposition (Bessonov-Bračič-Zajac 2011)

Let X and y be complex Banach spaces and let $\mathcal{S} \subseteq \mathcal{L}(X)$ be a hyperreflexive subspace of operators. If $A \in \mathcal{L}(X, y)$ and
$B \in \mathcal{L}(y, X)$ are invertible operators, then $A \mathcal{S} B \subseteq \mathcal{L}(y)$ is a hyperreflexive subspace and

$$
\frac{1}{\|A\|\|B\|\left\|A^{-1}\right\|\left\|B^{-1}\right\|} \kappa(\mathcal{S}) \leq \kappa(A \mathcal{S} B) \leq\|A\|\|B\|\left\|A^{-1}\right\|\left\|B^{-1}\right\| \kappa(\mathcal{S})
$$

Proposition (Bessonov-Bračič-Zajac 2011)

Let X and y be complex Banach spaces and let $\mathcal{S} \subseteq \mathcal{L}(X)$ be a hyperreflexive subspace of operators. If $A \in \mathcal{L}(X, y)$ and
$B \in \mathcal{L}(y, X)$ are invertible operators, then $A \mathcal{S} B \subseteq \mathcal{L}(y)$ is a hyperreflexive subspace and

$$
\frac{1}{\|A\|\|B\|\left\|A^{-1}\right\|\left\|B^{-1}\right\|} \kappa(\mathcal{S}) \leq \kappa(A \mathcal{S} B) \leq\|A\|\|B\|\left\|A^{-1}\right\|\left\|B^{-1}\right\| \kappa(\mathcal{S})
$$

Corollary

Let \mathcal{H} be a complex Hilbert space and $\mathcal{S} \subseteq \mathcal{L}(\mathcal{H})$ be a hyperreflexive linear space. If U and V are unitary operators on \mathcal{H}, then the space $U \mathcal{S} V$ is hyperreflexive and

$$
\begin{equation*}
\kappa(U \mathcal{S} V)=\kappa(\mathcal{S}) \tag{2}
\end{equation*}
$$

reflexivity \nRightarrow hyperreflexivity.
The first example has been obtained by Krause and Larson (1985). All known counterexamples are direct sum of hyperreflexive subspaces. Their constructions are based on the following facts
reflexivity \nRightarrow hyperreflexivity.
The first example has been obtained by Krause and Larson (1985). All known counterexamples are direct sum of hyperreflexive subspaces. Their constructions are based on the following facts

1. Orthogonal sum of reflexive spaces is reflexive,
2. $\mathcal{S}=\bigoplus_{n=1}^{\infty} \mathcal{S}_{n} \Longrightarrow \kappa\left(\mathcal{S}_{n}\right) \leq \kappa(\mathcal{S})$

reflexivity \nRightarrow hyperreflexivity.

The first example has been obtained by Krause and Larson (1985).
All known counterexamples are direct sum of hyperreflexive subspaces. Their constructions are based on the following facts

1. Orthogonal sum of reflexive spaces is reflexive,
2. $\mathcal{S}=\bigoplus_{n=1}^{\infty} \mathcal{S}_{n} \Longrightarrow \kappa\left(\mathcal{S}_{n}\right) \leq \kappa(\mathcal{S})$

The converse (of 2.) was proved by K. Kliś and M. Ptak (2006):
Theorem
$\mathcal{S}=\bigoplus_{n=1}^{\infty} \mathcal{S}_{n}$ is hyperreflexive if and only if
$\forall \mathcal{S}_{n}$ are hyperrefl. and $\exists K>0$ s.t. $\kappa\left(\mathcal{S}_{n}\right) \leq K \forall n \in \mathbb{N}$.

Kraus-Larson Example (1985):
Let H_{2} be a two-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}\right\}$. Fix $0<\varepsilon<1 / 3$ and put $u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$.

Kraus-Larson Example (1985):
Let H_{2} be a two-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}\right\}$. Fix $0<\varepsilon<1 / 3$ and put $u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$.
Lemma
Let

$$
\mathcal{S}_{\varepsilon}=\left\{S_{\lambda, \mu}=\left(\begin{array}{cc}
0 & \lambda \\
\mu & -(\lambda+\mu) / \varepsilon
\end{array}\right): \lambda, \mu \in \mathbb{C}\right\} .
$$

Kraus-Larson Example (1985):
Let H_{2} be a two-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}\right\}$. Fix $0<\varepsilon<1 / 3$ and put $u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$.
Lemma
Let

$$
\mathcal{S}_{\varepsilon}=\left\{S_{\lambda, \mu}=\left(\begin{array}{cc}
0 & \lambda \\
\mu & -(\lambda+\mu) / \varepsilon
\end{array}\right): \lambda, \mu \in \mathbb{C}\right\} .
$$

Then $\mathcal{S}_{\varepsilon}$ is a hyperreflexive subspace of $\mathcal{L}\left(H_{2}\right)$ with

$$
\begin{equation*}
\kappa(\mathcal{S}) \geq \frac{1}{3 \varepsilon} \tag{3}
\end{equation*}
$$

Kraus-Larson Example (1985):
Let H_{2} be a two-dimensional Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}\right\}$. Fix $0<\varepsilon<1 / 3$ and put $u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$.
Lemma
Let

$$
\mathcal{S}_{\varepsilon}=\left\{S_{\lambda, \mu}=\left(\begin{array}{cc}
0 & \lambda \\
\mu & -(\lambda+\mu) / \varepsilon
\end{array}\right): \lambda, \mu \in \mathbb{C}\right\} .
$$

Then $\mathcal{S}_{\varepsilon}$ is a hyperreflexive subspace of $\mathcal{L}\left(\mathrm{H}_{2}\right)$ with

$$
\begin{equation*}
\kappa(\mathcal{S}) \geq \frac{1}{3 \varepsilon} \tag{3}
\end{equation*}
$$

(3) has been proved directly from the definition. Now, we can give more precise estimate.

Theorem (S. Tosaka 1999)
Let $\mathcal{H}=\mathbb{C}^{2}$ and let $\mathcal{L} \neq \mathcal{M}$ be one-dimensional subspaces of \mathcal{H}, i.e. $\mathcal{L}+\mathcal{M}=\mathcal{H}$. Denote

Theorem (S. Tosaka 1999)
Let $\mathcal{H}=\mathbb{C}^{2}$ and let $\mathcal{L} \neq \mathcal{M}$ be one-dimensional subspaces of \mathcal{H}, i.e. $\mathcal{L}+\mathcal{M}=\mathcal{H}$. Denote
$\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}=\{T \in B(\mathcal{H}) ; T \mathcal{L} \subseteq \mathcal{L}$ and $T \mathcal{M} \subseteq \mathcal{M}\}$.

$$
\varphi=\measuredangle(\mathcal{L}, \mathcal{M}) .
$$

Then

Theorem (S. Tosaka 1999)
Let $\mathcal{H}=\mathbb{C}^{2}$ and let $\mathcal{L} \neq \mathcal{M}$ be one-dimensional subspaces of \mathcal{H}, i.e. $\mathcal{L}+\mathcal{M}=\mathcal{H}$. Denote
$\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}=\{T \in B(\mathcal{H}) ; T \mathcal{L} \subseteq \mathcal{L}$ and $T \mathcal{M} \subseteq \mathcal{M}\}$.

$$
\varphi=\measuredangle(\mathcal{L}, \mathcal{M}) .
$$

Then $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ is hyperreflexive and

$$
\kappa(\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\})=\frac{1}{\sin \varphi} .
$$

Theorem (S. Tosaka 1999)
Let $\mathcal{H}=\mathbb{C}^{2}$ and let $\mathcal{L} \neq \mathcal{M}$ be one-dimensional subspaces of \mathcal{H}, i.e. $\mathcal{L}+\mathcal{M}=\mathcal{H}$. Denote
$\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}=\{T \in B(\mathcal{H}) ; T \mathcal{L} \subseteq \mathcal{L}$ and $T \mathcal{M} \subseteq \mathcal{M}\}$.

$$
\varphi=\measuredangle(\mathcal{L}, \mathcal{M}) .
$$

Then $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ is hyperreflexive and

$$
\kappa(\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\})=\frac{1}{\sin \varphi} .
$$

Lemma

$$
\begin{equation*}
\kappa\left(\mathcal{S}_{\varepsilon}\right)=\frac{\sqrt{1+\varepsilon^{2}}}{\varepsilon}>\frac{1}{\varepsilon} . \tag{4}
\end{equation*}
$$

Theorem (S. Tosaka 1999)
Let $\mathcal{H}=\mathbb{C}^{2}$ and let $\mathcal{L} \neq \mathcal{M}$ be one-dimensional subspaces of \mathcal{H}, i.e. $\mathcal{L}+\mathcal{M}=\mathcal{H}$. Denote
$\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}=\{T \in B(\mathcal{H}) ; T \mathcal{L} \subseteq \mathcal{L}$ and $T \mathcal{M} \subseteq \mathcal{M}\}$.

$$
\varphi=\measuredangle(\mathcal{L}, \mathcal{M}) .
$$

Then $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ is hyperreflexive and

$$
\kappa(\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\})=\frac{1}{\sin \varphi} .
$$

Lemma

$$
\begin{equation*}
\kappa\left(\mathcal{S}_{\varepsilon}\right)=\frac{\sqrt{1+\varepsilon^{2}}}{\varepsilon}>\frac{1}{\varepsilon} \tag{4}
\end{equation*}
$$

$\mathcal{S}_{\varepsilon}$ from the Kraus-Larson example is not $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ (from Tosaka). However it is unitary equivalent to such an algebra:

Proof of the lemma.
Observe that $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is unitary and for $\forall \lambda, \mu \in \mathbb{C}$

$$
U S_{\lambda, \mu}=U\left(\begin{array}{cc}
0 & \lambda \\
\mu & -(\lambda+\mu) / \varepsilon
\end{array}\right)=\left(\begin{array}{cc}
-\mu & (\lambda+\mu) / \varepsilon \\
0 & \lambda
\end{array}\right) .
$$

Putting $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$.

Proof of the lemma.
Observe that $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is unitary and for $\forall \lambda, \mu \in \mathbb{C}$

$$
U S_{\lambda, \mu}=U\left(\begin{array}{cc}
0 & \lambda \\
\mu & -(\lambda+\mu) / \varepsilon
\end{array}\right)=\left(\begin{array}{cc}
-\mu & (\lambda+\mu) / \varepsilon \\
0 & \lambda
\end{array}\right) .
$$

$$
\text { Putting } e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} .
$$

we obtain $U \mathcal{S}_{\varepsilon}=\operatorname{Alg}\left\{\left[u_{1}\right],\left[u_{2}\right]\right\}, u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$, and

$$
\kappa\left(\mathcal{S}_{\varepsilon}\right)=\frac{1}{\sin \varphi}
$$

Proof of the lemma.
Observe that $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is unitary and for $\forall \lambda, \mu \in \mathbb{C}$

$$
\begin{aligned}
& U S_{\lambda, \mu}=U\left(\begin{array}{cc}
0 & \begin{array}{c}
\lambda \\
\mu
\end{array}-(\lambda+\mu) / \varepsilon
\end{array}\right)=\left(\begin{array}{cc}
-\mu & (\lambda+\mu) / \varepsilon \\
0 & \lambda
\end{array}\right) . \\
& \text { Putting } e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} .
\end{aligned}
$$

we obtain $U \mathcal{S}_{\varepsilon}=\operatorname{Alg}\left\{\left[u_{1}\right],\left[u_{2}\right]\right\}, u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$, and

$$
\kappa\left(\mathcal{S}_{\varepsilon}\right)=\frac{1}{\sin \varphi}
$$

where $\cos \varphi=\frac{\left(u_{1}, u_{2}\right)}{\left\|u_{1}\right\|\left\|u_{2}\right\|}=\frac{1}{\sqrt{1+\varepsilon^{2}}}$.

Proof of the lemma.
Observe that $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is unitary and for $\forall \lambda, \mu \in \mathbb{C}$

$$
\begin{aligned}
& U S_{\lambda, \mu}=U\left(\begin{array}{cc}
0 & \begin{array}{c}
\lambda \\
\mu
\end{array}-(\lambda+\mu) / \varepsilon
\end{array}\right)=\left(\begin{array}{cc}
-\mu & (\lambda+\mu) / \varepsilon \\
0 & \lambda
\end{array}\right) . \\
& \text { Putting } e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} .
\end{aligned}
$$

we obtain $U \mathcal{S}_{\varepsilon}=\operatorname{Alg}\left\{\left[u_{1}\right],\left[u_{2}\right]\right\}, u_{1}=e_{1}, u_{2}=e_{1}+\varepsilon e_{2}$, and

$$
\kappa\left(\mathcal{S}_{\varepsilon}\right)=\frac{1}{\sin \varphi}
$$

where $\cos \varphi=\frac{\left(u_{1}, u_{2}\right)}{\left\|u_{1}\right\|\left\|u_{2}\right\|}=\frac{1}{\sqrt{1+\varepsilon^{2}}}$.

$$
\sin \varphi=\sqrt{1-\cos ^{2} \varphi}=\frac{\varepsilon}{\sqrt{1+\varepsilon^{2}}} \Longrightarrow \frac{1}{\sin \varphi}=\frac{\sqrt{1+\varepsilon^{2}}}{\varepsilon}>\frac{1}{\varepsilon} . .
$$

Nonhyperreflexive reflexive intertwiners
Kraus-Larson example can be also used (M.Z. 2008) to show that there are reflexive intertwiners which are not hyperreflexive.

Nonhyperreflexive reflexive intertwiners
Kraus-Larson example can be also used (M.Z. 2008) to show that there are reflexive intertwiners which are not hyperreflexive.
The intertwiner of $T \in \mathcal{L}(\mathcal{H}), T^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ is

$$
I\left(T, T^{\prime}\right)=\left\{X \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right): X T=T^{\prime} X\right\} .
$$

Nonhyperreflexive reflexive intertwiners
Kraus-Larson example can be also used (M.Z. 2008) to show that there are reflexive intertwiners which are not hyperreflexive.
The intertwiner of $T \in \mathcal{L}(\mathcal{H}), T^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ is

$$
I\left(T, T^{\prime}\right)=\left\{X \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right): X T=T^{\prime} X\right\} .
$$

Putting $\quad A_{n}=\left(\begin{array}{ll}0 & n \\ 0 & 1\end{array}\right), B_{n}=\left(\begin{array}{cc}0 & 0 \\ -n & 1\end{array}\right)$
we obtain

Nonhyperreflexive reflexive intertwiners

Kraus-Larson example can be also used (M.Z. 2008) to show that there are reflexive intertwiners which are not hyperreflexive.
The intertwiner of $T \in \mathcal{L}(\mathcal{H}), T^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ is

$$
I\left(T, T^{\prime}\right)=\left\{X \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right): X T=T^{\prime} X\right\} .
$$

$$
\text { Putting } \quad A_{n}=\left(\begin{array}{ll}
0 & n \\
0 & 1
\end{array}\right), B_{n}=\left(\begin{array}{cc}
0 & 0 \\
-n & 1
\end{array}\right)
$$

we obtain $X \in I\left(A_{n}, B_{n}\right) \Longleftrightarrow \exists \lambda, \mu \in \mathbb{C}: X_{n}=\left(\begin{array}{cc}0 & \lambda \\ \mu-n(\lambda+\mu)\end{array}\right)$,
i.e. $I\left(A_{n}, B_{n}\right)=\mathcal{S}_{1 / n}$ from the Kraus-Larson example.

Nonhyperreflexive reflexive intertwiners

Kraus-Larson example can be also used (M.Z. 2008) to show that there are reflexive intertwiners which are not hyperreflexive.
The intertwiner of $T \in \mathcal{L}(\mathcal{H}), T^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ is

$$
I\left(T, T^{\prime}\right)=\left\{X \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right): X T=T^{\prime} X\right\}
$$

$$
\text { Putting } \quad A_{n}=\left(\begin{array}{ll}
0 & n \\
0 & 1
\end{array}\right), B_{n}=\left(\begin{array}{cc}
0 & 0 \\
-n & 1
\end{array}\right)
$$

we obtain $X \in I\left(A_{n}, B_{n}\right) \Longleftrightarrow \exists \lambda, \mu \in \mathbb{C}: X_{n}=\binom{0}{\mu-n(\lambda+\mu)}$,
i.e. $I\left(A_{n}, B_{n}\right)=\mathcal{S}_{1 / n}$ from the Kraus-Larson example.

Now it is easy to prove
Theorem (M.Z. 2008)
There exist operators T, T^{\prime} for which $I\left(T, T^{\prime}\right)$ is reflexive but not hyperreflexive.

Proof.
It is enough to put

$$
T_{n}=e^{i \pi / n} \frac{1}{n}\left(n I+A_{n}\right), \quad T_{n}^{\prime}=e^{i \pi / n} \frac{1}{n}\left(n I+B_{n}\right) .
$$

Then

- $I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, A_{n}^{\prime}\right)$,

Proof.
It is enough to put

$$
T_{n}=e^{i \pi / n} \frac{1}{n}\left(n I+A_{n}\right), \quad T_{n}^{\prime}=e^{i \pi / n} \frac{1}{n}\left(n I+B_{n}\right) .
$$

Then

- $I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, A_{n}^{\prime}\right)$,
- $\left\|A_{n}\right\|=\left\|B_{n}\right\|=\sqrt{1+n^{2}} \Longrightarrow\left\|T_{n}\right\| \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- analogously, $\left\{\left\|T_{n}^{\prime}\right\|\right\} \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,

Proof.
It is enough to put

$$
T_{n}=e^{i \pi / n} \frac{1}{n}\left(n I+A_{n}\right), \quad T_{n}^{\prime}=e^{i \pi / n} \frac{1}{n}\left(n I+B_{n}\right) .
$$

Then

- $I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, A_{n}^{\prime}\right)$,
- $\left\|A_{n}\right\|=\left\|B_{n}\right\|=\sqrt{1+n^{2}} \Longrightarrow\left\|T_{n}\right\| \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- analogously, $\left\{\left\|T_{n}^{\prime}\right\|\right\} \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- operators $T=\bigoplus_{n=1}^{\infty} T_{n}, T^{\prime}=\bigoplus_{n=1}^{\infty} T_{n}^{\prime}$ are bounded

Proof.
It is enough to put

$$
T_{n}=e^{i \pi / n} \frac{1}{n}\left(n I+A_{n}\right), \quad T_{n}^{\prime}=e^{i \pi / n} \frac{1}{n}\left(n I+B_{n}\right) .
$$

Then

- $I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, A_{n}^{\prime}\right)$,
- $\left\|A_{n}\right\|=\left\|B_{n}\right\|=\sqrt{1+n^{2}} \Longrightarrow\left\|T_{n}\right\| \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- analogously, $\left\{\left\|T_{n}^{\prime}\right\|\right\} \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- operators $T=\bigoplus_{n=1}^{\infty} T_{n}, T^{\prime}=\bigoplus_{n=1}^{\infty} T_{n}^{\prime}$ are bounded
- For $n \neq m$ the minimal polynomials of T_{n} and T_{m}^{\prime} are relatively prime,
$\Rightarrow \Longrightarrow I\left(T_{n}, T_{m}^{\prime}\right)=\{0\} \Longrightarrow I\left(T, T^{\prime}\right)=\bigoplus_{n=1}^{\infty} I\left(T_{n}, T_{n}^{\prime}\right)$

Proof.
It is enough to put

$$
T_{n}=e^{i \pi / n} \frac{1}{n}\left(n I+A_{n}\right), \quad T_{n}^{\prime}=e^{i \pi / n} \frac{1}{n}\left(n I+B_{n}\right) .
$$

Then

- $I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, A_{n}^{\prime}\right)$,
- $\left\|A_{n}\right\|=\left\|B_{n}\right\|=\sqrt{1+n^{2}} \Longrightarrow\left\|T_{n}\right\| \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- analogously, $\left\{\left\|T_{n}^{\prime}\right\|\right\} \leq 1+\frac{\sqrt{1+n^{2}}}{n}<3$,
- operators $T=\bigoplus_{n=1}^{\infty} T_{n}, T^{\prime}=\bigoplus_{n=1}^{\infty} T_{n}^{\prime}$ are bounded
- For $n \neq m$ the minimal polynomials of T_{n} and T_{m}^{\prime} are relatively prime,

$$
\triangleright \Longrightarrow I\left(T_{n}, T_{m}^{\prime}\right)=\{0\} \Longrightarrow I\left(T, T^{\prime}\right)=\bigoplus_{n=1}^{\infty} I\left(T_{n}, T_{n}^{\prime}\right)
$$

Thus the Kraus-Larson example is also an example of intertwiner which is reflexive but not hyperreflexive.
C_{0} contractions
The preceding example can be modified to obtain C_{0} contraction T with reflexive, but not hyperreflexive commutant. Put

C_{0} contractions

The preceding example can be modified to obtain C_{0} contraction T with reflexive, but not hyperreflexive commutant. Put

$$
A_{n}=\left(\begin{array}{cc}
0 & n \\
0 & 1
\end{array}\right), D_{n}=\left(1-\frac{1}{n}\right) I+\frac{1}{n^{2}} A_{n}, T_{n}=\frac{e^{i \pi / n}}{\left\|D_{n}\right\|} D_{n}
$$

Again, by Tosaka, $\kappa\left\{T_{n}\right\}^{\prime}=\kappa\left\{A_{n}\right\}^{\prime}=\sqrt{1+n^{2}}$. Thus we obtain:

C_{0} contractions

The preceding example can be modified to obtain C_{0} contraction T with reflexive, but not hyperreflexive commutant. Put

$$
A_{n}=\left(\begin{array}{ll}
0 & n \\
0 & 1
\end{array}\right), D_{n}=\left(1-\frac{1}{n}\right) I+\frac{1}{n^{2}} A_{n}, T_{n}=\frac{e^{i \pi / n}}{\left\|D_{n}\right\|} D_{n}
$$

Again, by Tosaka, $\kappa\left\{T_{n}\right\}^{\prime}=\kappa\left\{A_{n}\right\}^{\prime}=\sqrt{1+n^{2}}$. Thus we obtain:
(i) $\left\|T_{n}\right\|=1$.
(ii) $D_{n}\binom{0}{1}=\binom{1 / n}{1-(1 / n)+\left(1 / n^{2}\right)} \Longrightarrow\left\|D_{n}\right\|>1-(1 / n)+\left(1 / n^{2}\right)$,
(iii) spectrum $\sigma\left(D_{n}\right)=\left\{1-\frac{1}{n}, 1-\frac{1}{n}+\frac{1}{n^{2}}\right)$, i.e. $\left\|D_{N}\right\|>r\left(D_{n}\right)$

C_{0} contractions

The preceding example can be modified to obtain C_{0} contraction T with reflexive, but not hyperreflexive commutant. Put

$$
A_{n}=\left(\begin{array}{cc}
0 & n \\
0 & 1
\end{array}\right), D_{n}=\left(1-\frac{1}{n}\right) I+\frac{1}{n^{2}} A_{n}, T_{n}=\frac{e^{i \pi / n}}{\left\|D_{n}\right\|} D_{n}
$$

Again, by Tosaka, $\kappa\left\{T_{n}\right\}^{\prime}=\kappa\left\{A_{n}\right\}^{\prime}=\sqrt{1+n^{2}}$. Thus we obtain:
(i) $\left\|T_{n}\right\|=1$.
(ii) $D_{n}\binom{0}{1}=\binom{1 / n}{1-(1 / n)+\left(1 / n^{2}\right)} \Longrightarrow\left\|D_{n}\right\|>1-(1 / n)+\left(1 / n^{2}\right)$,
(iii) spectrum $\sigma\left(D_{n}\right)=\left\{1-\frac{1}{n}, 1-\frac{1}{n}+\frac{1}{n^{2}}\right)$, i.e. $\left\|D_{N}\right\|>r\left(D_{n}\right)$ $\sigma\left(T_{n}\right)=\left\{\lambda_{n}, \mu_{n}\right\},\left|\lambda_{n}\right|<\left|\mu_{n}\right|<1, \lim \left|\lambda_{n}\right|=\lim \left|\mu_{n}\right|=1$.

C_{0} contractions

The preceding example can be modified to obtain C_{0} contraction T with reflexive, but not hyperreflexive commutant. Put

$$
A_{n}=\left(\begin{array}{ll}
0 & n \\
0 & 1
\end{array}\right), D_{n}=\left(1-\frac{1}{n}\right) I+\frac{1}{n^{2}} A_{n}, T_{n}=\frac{e^{i \pi / n}}{\left\|D_{n}\right\|} D_{n}
$$

Again, by Tosaka, $\kappa\left\{T_{n}\right\}^{\prime}=\kappa\left\{A_{n}\right\}^{\prime}=\sqrt{1+n^{2}}$. Thus we obtain:
(i) $\left\|T_{n}\right\|=1$.
(ii) $D_{n}\binom{0}{1}=\binom{1 / n}{1-(1 / n)+\left(1 / n^{2}\right)} \Longrightarrow\left\|D_{n}\right\|>1-(1 / n)+\left(1 / n^{2}\right)$,
(iii) spectrum $\sigma\left(D_{n}\right)=\left\{1-\frac{1}{n}, 1-\frac{1}{n}+\frac{1}{n^{2}}\right)$, i.e. $\left\|D_{N}\right\|>r\left(D_{n}\right)$ $\sigma\left(T_{n}\right)=\left\{\lambda_{n}, \mu_{n}\right\},\left|\lambda_{n}\right|<\left|\mu_{n}\right|<1, \lim \left|\lambda_{n}\right|=\lim \left|\mu_{n}\right|=1$.
(iv) If $m \neq n$ then $\sigma\left(T_{n}\right) \cap \sigma\left(T_{m}\right)=\emptyset$.

Theorem
There exists a sequence of matrices $T_{k} \in C^{2 \times 2}$ such that

1. $\left\|T_{k}\right\|=1$ for all $k=1,2, \ldots$.

Theorem

There exists a sequence of matrices $T_{k} \in C^{2 \times 2}$ such that

1. $\left\|T_{k}\right\|=1$ for all $k=1,2, \ldots$.
2. Each T_{k} has two eigenvalues $\lambda_{k} \neq \mu_{k}$ and therefore its commutant $\left\{T_{k}\right\}^{\prime}$ is hyperreflexive.

Theorem

There exists a sequence of matrices $T_{k} \in C^{2 \times 2}$ such that

1. $\left\|T_{k}\right\|=1$ for all $k=1,2, \ldots$.
2. Each T_{k} has two eigenvalues $\lambda_{k} \neq \mu_{k}$ and therefore its commutant $\left\{T_{k}\right\}^{\prime}$ is hyperreflexive.
3. For any $k \neq m$ the spectra of T_{k} and T_{m} are disjoint, i.e. $\left\{\lambda_{k}, \mu_{k}\right\} \cap\left\{\lambda_{m}, \mu_{m}\right\}=\emptyset$.
4. $\lim _{k \rightarrow \infty} \kappa\left(\left\{T_{k}\right\}^{\prime}\right)=\infty$.

Theorem

There exists a sequence of matrices $T_{k} \in C^{2 \times 2}$ such that

1. $\left\|T_{k}\right\|=1$ for all $k=1,2, \ldots$
2. Each T_{k} has two eigenvalues $\lambda_{k} \neq \mu_{k}$ and therefore its commutant $\left\{T_{k}\right\}^{\prime}$ is hyperreflexive.
3. For any $k \neq m$ the spectra of T_{k} and T_{m} are disjoint, i.e. $\left\{\lambda_{k}, \mu_{k}\right\} \cap\left\{\lambda_{m}, \mu_{m}\right\}=\emptyset$.
4. $\lim _{k \rightarrow \infty} \kappa\left(\left\{T_{k}\right\}^{\prime}\right)=\infty$.
5. $\sum_{k=1}^{\infty}\left[\left(1-\left|\lambda_{k}\right|\right)+\left(1-\left|\mu_{k}\right|\right)\right]<\infty$ and, consequently,
6. Blaschke product $B(\lambda)=\prod_{k=1}^{\infty} \frac{\overline{\lambda_{k}}}{\left|\lambda_{k}\right|} \frac{\lambda_{k}-\lambda}{1-\overline{\lambda_{k}} \lambda} \frac{\overline{\mu_{k}}}{\mu_{k} \mid} \frac{\mu_{k}-\lambda}{1-\overline{\mu_{k} \lambda}}$ converges in the open unit disk.

Theorem

There exists a sequence of matrices $T_{k} \in C^{2 \times 2}$ such that

1. $\left\|T_{k}\right\|=1$ for all $k=1,2, \ldots$.
2. Each T_{k} has two eigenvalues $\lambda_{k} \neq \mu_{k}$ and therefore its commutant $\left\{T_{k}\right\}^{\prime}$ is hyperreflexive.
3. For any $k \neq m$ the spectra of T_{k} and T_{m} are disjoint, i.e. $\left\{\lambda_{k}, \mu_{k}\right\} \cap\left\{\lambda_{m}, \mu_{m}\right\}=\emptyset$.
4. $\lim _{k \rightarrow \infty} \kappa\left(\left\{T_{k}\right\}^{\prime}\right)=\infty$.
5. $\sum_{k=1}^{\infty}\left[\left(1-\left|\lambda_{k}\right|\right)+\left(1-\left|\mu_{k}\right|\right)\right]<\infty$ and, consequently,
6. Blaschke product $B(\lambda)=\prod_{k=1}^{\infty} \frac{\bar{\lambda}}{\left|\lambda_{k}\right|} \frac{\lambda_{k}-\lambda}{1-\overline{\lambda_{k}} \lambda} \frac{\overline{\mu_{k}}}{\mu_{k} \mid} \frac{\mu_{k}-\lambda}{1-\overline{\mu_{k}} \lambda}$ converges in the open unit disk.
Consequently, $T=\bigoplus_{k=1}^{\infty} T_{k}$ is a C_{0} contraction having minimal function $B(\lambda)$ and $\{T\}^{\prime}$ is reflexive but not hyperreflexive.

Recall that $m(\lambda) \in H^{\infty}$ is the minimal function of a C_{0} contraction T if $m(T)=0$ and if $f(T)=0$, then $m \mid f$. The simplest C_{0} is model operator S_{m} :

$$
S_{m} \in \mathcal{L}\left(H^{2} \ominus m H^{2}\right), \quad S_{m} u=P_{m}[\lambda u(\lambda)] .
$$

Recall that $m(\lambda) \in H^{\infty}$ is the minimal function of a C_{0} contraction T if $m(T)=0$ and if $f(T)=0$, then $m \mid f$. The simplest C_{0} is model operator S_{m} :

$$
S_{m} \in \mathcal{L}\left(H^{2} \ominus m H^{2}\right), \quad S_{m} u=P_{m}[\lambda u(\lambda)]
$$

For T from the previous screen defect indices $\operatorname{dim} \overline{\left(I-T^{*} T\right) \mathcal{H}}=\operatorname{dim} \overline{\left(I-T T^{*}\right) \mathcal{H}}=\infty$,

Recall that $m(\lambda) \in H^{\infty}$ is the minimal function of a C_{0} contraction T if $m(T)=0$ and if $f(T)=0$, then $m \mid f$. The simplest C_{0} is model operator S_{m} :

$$
S_{m} \in \mathcal{L}\left(H^{2} \ominus m H^{2}\right), \quad S_{m} u=P_{m}[\lambda u(\lambda)]
$$

For T from the previous screen defect indices
$\operatorname{dim} \overline{\left(I-T^{*} T\right) \mathcal{H}}=\operatorname{dim} \overline{\left(I-T T^{*}\right) \mathcal{H}}=\infty$,
each S_{m} has defect indices $=1$. Thus T is not similar to model S_{m}

Recall that $m(\lambda) \in H^{\infty}$ is the minimal function of a C_{0} contraction T if $m(T)=0$ and if $f(T)=0$, then $m \mid f$. The simplest C_{0} is model operator S_{m} :

$$
S_{m} \in \mathcal{L}\left(H^{2} \ominus m H^{2}\right), \quad S_{m} u=P_{m}[\lambda u(\lambda)]
$$

For T from the previous screen defect indices $\operatorname{dim} \overline{\left(I-T^{*} T\right) \mathcal{H}}=\operatorname{dim} \overline{\left(I-T T^{*}\right) \mathcal{H}}=\infty$, each S_{m} has defect indices $=1$. Thus T is not similar to model S_{m} Now, a construction of reflexive but not hyperreflexive S_{m} will be indicated:

First, we recall a sufficient condition for hyperreflexivity of the model operator

First, we recall a sufficient condition for hyperreflexivity of the model operator

Theorem
For $\lambda \in \mathbb{C},|\lambda|<1$ denote the corresponding Blaschke factor

$$
b_{\lambda}(z)=\frac{|\lambda|}{\lambda} \frac{\lambda-z}{1-\bar{\lambda} z}
$$

and let B be a Blaschke product having only simple zeroes:

$$
B(z)=\prod_{n=1}^{\infty} b_{\lambda_{n}}(z)
$$

First, we recall a sufficient condition for hyperreflexivity of the model operator

Theorem
For $\lambda \in \mathbb{C},|\lambda|<1$ denote the corresponding Blaschke factor

$$
b_{\lambda}(z)=\frac{|\lambda|}{\lambda} \frac{\lambda-z}{1-\bar{\lambda} z}
$$

and let B be a Blaschke product having only simple zeroes:

$$
B(z)=\prod_{n=1}^{\infty} b_{\lambda_{n}}(z) \quad \text { and let } B_{\lambda_{n}}(z)=\frac{B(z)}{b_{\lambda_{n}}(z)}
$$

First, we recall a sufficient condition for hyperreflexivity of the model operator

Theorem
For $\lambda \in \mathbb{C},|\lambda|<1$ denote the corresponding Blaschke factor

$$
b_{\lambda}(z)=\frac{|\lambda|}{\lambda} \frac{\lambda-z}{1-\bar{\lambda} z}
$$

and let B be a Blaschke product having only simple zeroes:

$$
B(z)=\prod_{n=1}^{\infty} b_{\lambda_{n}}(z) \quad \text { and let } B_{\lambda_{n}}(z)=\frac{B(z)}{b_{\lambda_{n}}(z)}
$$

If B satisfies the Carleson condition

$$
\inf _{n}\left|B_{\lambda_{n}}\left(\lambda_{n}\right)\right|>0
$$

First, we recall a sufficient condition for hyperreflexivity of the model operator

Theorem
For $\lambda \in \mathbb{C},|\lambda|<1$ denote the corresponding Blaschke factor

$$
b_{\lambda}(z)=\frac{|\lambda|}{\lambda} \frac{\lambda-z}{1-\bar{\lambda} z}
$$

and let B be a Blaschke product having only simple zeroes:

$$
B(z)=\prod_{n=1}^{\infty} b_{\lambda_{n}}(z) \quad \text { and let } B_{\lambda_{n}}(z)=\frac{B(z)}{b_{\lambda_{n}}(z)}
$$

If B satisfies the Carleson condition

$$
\inf _{n}\left|B_{\lambda_{n}}\left(\lambda_{n}\right)\right|>0
$$

then S_{B} is hyperreflexive.

The main idea (due to R.V. Bessonov) how to construct a Blaschke product B having simple zeroes for which S_{B} is not hyperreflexive was to take

The main idea (due to R.V. Bessonov) how to construct a Blaschke product B having simple zeroes for which S_{B} is not hyperreflexive was to take
$B(z)=C(z) D(z)$, where
$C(z)=\prod_{n=1}^{\infty} b_{\mu_{n}}(z), D(z)=\prod_{n=1}^{\infty} b_{\nu_{n}}(z)$ such that $0<\left|\mu_{n}-\nu_{n}\right|$ is sufficiently small, i.e. B is 'almost' a square.

The main idea (due to R.V. Bessonov) how to construct a Blaschke product B having simple zeroes for which S_{B} is not hyperreflexive was to take
$B(z)=C(z) D(z)$, where
$C(z)=\prod_{n=1}^{\infty} b_{\mu_{n}}(z), D(z)=\prod_{n=1}^{\infty} b_{\nu_{n}}(z)$ such that $0<\left|\mu_{n}-\nu_{n}\right|$ is sufficiently small, i.e. B is 'almost' a square.
Then S_{B} is similar to the direct sum of its restrictions M_{n} to the 2-dimensional spaces spanned by the eigenvectors corresponding to the eigenvalues μ_{n} and ν_{n}

The main idea (due to R.V. Bessonov) how to construct a Blaschke product B having simple zeroes for which S_{B} is not hyperreflexive was to take
$B(z)=C(z) D(z)$, where
$C(z)=\prod_{n=1}^{\infty} b_{\mu_{n}}(z), D(z)=\prod_{n=1}^{\infty} b_{\nu_{n}}(z)$ such that
$0<\left|\mu_{n}-\nu_{n}\right|$ is sufficiently small, i.e. B is 'almost' a square.
Then S_{B} is similar to the direct sum of its restrictions M_{n} to the 2-dimensional spaces spanned by the eigenvectors corresponding to the eigenvalues μ_{n} and ν_{n}
Then the angle that make those eigenvalues $\rightarrow 0$ and, consequently

$$
\lim \kappa\left(S_{B} \mid M_{n}\right)=\infty
$$

So this example is again of the Kraus-Larson type.

We conclude with a natural open problem:
Question
Does there exist a non-hyperreflexive reflexive space of operators which is not similar to a direct sum of reflexive spaces?

Thank you for your attention

Thank you for participating in 8th WFA

