On a dynamic contact problem for a geometrically nonlinear viscoelastic shell

I. Bock and J. Jarušek *

Abstract

We deal with an initial-boundary value problem describing the perpendicular vibrations of a viscoelastic Kármán-Donnell shell with a rigid inner obstacle. A weak formulation of a problem is in a form of a hyperbolic variational inequality. We solve this problem using the penalization method

1 INTRODUCTION AND NOTATION

Contact problems represent an important but complex topic of applied mathematics. For elastic problems there is only a very limited amount of results available (cf. [?] [?] and there cited literature). Viscosity makes possible to prove the existence of solutions for a broader set of problems for membranes, bodies as well as for linear models of plates. The von Kármán plate made of a short memory material in a dynamic contact was studied in [?]. The aim of the present paper is to extend these results to the nonlinear von Kármán-Donnell shells. The presented results also extend the research made for the quasistatic contact problems for viscoelastic shells (cf. [?]).

The existence of solutions is proved for an approximate penalized problem at first. The limit process to the original problem is enabled by an L_{1} estimate of the penalty term and by the use of the compact imbedding theorem and by a proper use of the interpolation technique.

Let $\Omega \subset R^{2}$ be a bounded convex polygonal or C^{2} domain with a boundary Γ and $I \equiv(0, T)$ be a bounded time interval. The unit outer normal vector is denoted by $\mathbf{n}=\left(n_{1}, n_{2}\right), \tau=$ $\left(-n_{2}, n_{1}\right)$ is the unit tangent vector. The displacement is denoted by $\mathbf{u} \equiv\left(u_{i}\right)$. Further employed notations are $\frac{\partial}{\partial s} \equiv \partial_{s}, \frac{\partial^{2}}{\partial s \partial r} \equiv \partial_{s r}, \partial_{i}=\partial_{x_{i}}, \quad i=1,2,3$, $\dot{v}=\frac{\partial v}{\partial t}, \ddot{v}=\frac{\partial^{2} v}{\partial t^{2}}, Q=I \times \Omega, S=I \times \Gamma$.

A shallow isotropic shell is occupying the domain

$$
\mathcal{A}=\left\{(x, z) \in R^{3}: x=\left(x_{1}, x_{2}\right) \in \Omega,|z-\mathcal{S}(x)|<h\right\},
$$

where $z=\mathcal{S}(x), x \in \Omega$ is a middle surface of a shell.
Strain tensor is defined as

$$
\begin{aligned}
& \varepsilon_{i j}(\mathbf{u})=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}+\partial_{i} u_{3} \partial_{j} u_{3}\right)-k_{i j} u_{3}-x_{3} \partial_{i j} u_{3}, i, j=1,2 ; \\
& \varepsilon_{i 3} \equiv 0, i=1,2,3
\end{aligned}
$$

with $k_{12}=0$ and the curvatures $k_{i i}>0, i=1,2$.
Further, we denote

$$
[u, v] \equiv \partial_{11} u \partial_{22} v+\partial_{22} u \partial_{11} v-2 \partial_{12} u \partial_{12} v .
$$

In the sequel, we denote by $W_{p}^{k}(M), k \geq 0, p \in[1, \infty]$ the Sobolev (for a noninteger p the Sobolev-Slobodetskii) spaces defined on a domain or an appropriate manifold M. By $\dot{W}_{p}^{k}(M)$

[^0]the spaces with zero traces are denoted. If $p=2$ we use the notation $H^{k}(M), \stackrel{\circ}{H}^{k}(M)$. The duals to $\stackrel{\circ}{H}^{k}(M)$ are denoted by $H^{-k}(M)$. For the anisotropic spaces $W_{p}^{k}(M), k=\left(k_{1}, k_{2}\right) \in$ $R_{+}^{2}, R_{+}=(0, \infty), k_{1}$ is related with the time while k_{2} with the space variables (with the obvious consequences for $p=2$). By C we denote the space of continuous functions with the appropriate sup-norm. By \mathcal{H}, \mathcal{H} we denote the spaces $L_{\infty}\left(I ; H^{2}(\Omega)\right), L_{\infty}\left(I ; \dot{H}^{2}(\Omega)\right)$, respectively. The following generalization of the Aubin's compactness lemma verified in [?] Theorem 3.1 will be essentially used:

Lemma 1.1 Let $B_{0} \hookrightarrow \hookrightarrow B \hookrightarrow B_{1}$ be Banach spaces, the first reflexive and separable. Let $1<p<\infty, 1 \leq q<\infty$. Then

$$
W \equiv\left\{v ; v \in L_{p}\left(I ; B_{0}\right), \dot{v} \in L_{q}\left(I, B_{1}\right)\right\} \hookrightarrow \hookrightarrow L_{p}(I ; B) .
$$

2 CONTACT OF A VISCOELASTIC SHELL WITH A SHORT MEMORY

The constitutional law has the form

$$
\begin{aligned}
\sigma_{i j}(\mathbf{u})= & \frac{E_{1}}{1-\mu^{2}} \partial_{t}\left((1-\mu) \varepsilon_{i j}(\mathbf{u})+\mu \delta_{\mathbf{i} \mathbf{j}} \varepsilon_{\mathbf{k k}}(\mathbf{u})\right) \\
& +\frac{E_{0}}{1-\mu^{2}}\left((1-\mu) \varepsilon_{i j}(\mathbf{u})+\mu \delta_{\mathbf{i} \mathbf{j}} \varepsilon_{\mathbf{k k}}(\mathbf{u})\right) .
\end{aligned}
$$

The constants $E_{0}, E_{1}>0$ are the Young modulus of elasticity and the modulus of viscosity, respectively, $\mu \in\left(0, \frac{1}{2}\right)$ is the Poisson ratio. We involve also the rotation inertia expressed by the term $a \Delta \ddot{u}$ in the first equation of the considered system with $a=\frac{h^{2}}{12}$. It will play the crucial role in the deriving a strong convergence of the sequence of velocities $\left\{\dot{u}_{m}\right\}$ in the appropriate space. Further we denote $b=\frac{h^{2}}{12 \rho\left(1-\mu^{2}\right)}$ the material constant with $\rho>0$ the density of the material. We concentrate for simplicity on the case of a free plate.

The classical formulation generalizes the elastic case derived in [?] and is composed of the system

$$
\left.\begin{array}{l}
\ddot{u}+a \Delta \ddot{u}+b\left(E_{1} \Delta^{2} \dot{u}+E_{0} \Delta^{2} u\right)-[u, v]-k_{11} \partial_{22} v-k_{22} \partial_{11} v=f+g \tag{1}\\
u \geq 0, g \geq 0, u g=0 \\
\Delta^{2} v+ \\
E_{1} \partial_{t}\left(\frac{1}{2}[u, u]+k_{11} \partial_{22} u+k_{22} \partial_{11} u\right)+E_{0}\left(\frac{1}{2}[u, u]+k_{11} \partial_{22} u+k_{22} \partial_{11} u\right)=0
\end{array}\right\} \text { on } Q
$$

the boundary conditions

$$
\begin{align*}
& u \geq 0, \Sigma_{1}(u) \geq 0, u \Sigma_{1}(u)=0 \\
& \mathcal{M}_{1}(u)=0, v=0 \text { and } \partial_{n} v=0 \text { on } S, \tag{2}\\
& \mathcal{M}_{1}(u)=b\left[E_{1} M(\dot{u})+E_{0}(u)\right] \\
& \Sigma_{1}(u)=b\left[E_{1} V(\dot{u})+E_{0} V(u)\right]-a \ddot{u}
\end{align*}
$$

and the initial conditions

$$
\begin{equation*}
u(0, \cdot)=u_{0} \geq 0, \dot{u}(0, \cdot)=u_{1} \text { on } \Omega \tag{3}
\end{equation*}
$$

We introduce cone $\mathcal{K}:=\left\{y \in H^{1,2}(Q) ; \dot{y} \in L_{2}\left(I ; H^{1}(\Omega)\right), y \geq 0\right\}$ and bilinear form

$$
A(u, y)=\partial_{11} u \partial_{11} y+\partial_{22} u \partial_{22} y+\mu \partial_{11} u \partial_{22} y+\partial_{22} u \partial_{11} y+2(1-\mu) \partial_{12} u \partial_{12} y
$$

Then the variational formulation of the problem (??-??) has the following form:

Find $\{u, v\} \in \mathcal{K} \times L_{2}\left(I ; \stackrel{\circ}{H}^{2}(\Omega)\right)$ such that $\dot{u} \in L_{2}\left(I ; H^{2}(\Omega)\right)$ and the following system

$$
\begin{align*}
& \int_{Q}\left(E_{1} A\left(\dot{u}, y_{1}-u\right)+E_{0} A\left(u, y_{1}-u\right)-\left([u, v]+k_{11} \partial_{22} v+k_{22} \partial_{11} v\right)\left(y_{1}-u\right)\right) d x d t \\
& -\int_{Q}\left(a \nabla \dot{u} \cdot \nabla\left(\dot{y}_{1}-\dot{u}\right)+\dot{u}\left(\dot{y}_{1}-\dot{u}\right)\right) d x d t \\
& +\int_{\Omega}\left(a \nabla \dot{u} \cdot \nabla\left(y_{1}-u\right)+\dot{u}\left(y_{1}-u\right)\right)(T, \cdot) d x \tag{4}\\
\geq \quad & \int_{\Omega}\left(a \nabla u_{1} \cdot \nabla\left(y_{1}(0, \cdot)-u_{0}\right)+u_{1}\left(y_{1}(0, \cdot)-u_{0}\right)\right) d x+\int_{Q} f\left(y_{1}-u\right) d x d t \\
& \int_{\Omega} \Delta v \Delta y_{2} d x= \tag{5}\\
& -\int_{\Omega}\left(E_{1} \partial_{t}\left(\frac{1}{2}[u, u]+k_{11} \partial_{22} u+k_{22} \partial_{11} u\right)+E_{0}\left(\frac{1}{2}[u, u]+k_{11} \partial_{22} u+k_{22} \partial_{11} u\right)\right) y_{2} d x
\end{align*}
$$

is satisfied for all $\left(y_{1}, y_{2}\right) \in \mathcal{K} \times \stackrel{\circ}{H}^{2}(\Omega)$.
We define the bilinear operator $\Phi: H^{2}(\Omega)^{2} \rightarrow \stackrel{\circ}{H}^{2}(\Omega)$ and the linear operators $\Delta_{k}: H^{2}(\Omega) \mapsto$ $L_{2}(\Omega), L: H^{2}(\Omega) \rightarrow \stackrel{\circ}{H}^{2}(\Omega)$ by means of the variational equations and the identity

$$
\begin{align*}
& \int_{\Omega} \Delta \Phi(u, v) \Delta \varphi d x=\int_{\Omega}[u, v] \varphi d x \forall \varphi \in \stackrel{\circ}{H}^{2}(\Omega) \tag{6}\\
& \Delta_{k} v=k_{11} \partial_{22} v+k_{22} \partial_{11} v \forall v \in H^{2}(\Omega) \tag{7}\\
& \int_{\Omega} \Delta L u \Delta \varphi d x=\int_{\Omega} \Delta_{k} u \varphi d x \forall \varphi \in \dot{\circ}^{2}(\Omega) \tag{8}
\end{align*}
$$

The equation (??) has a unique solution, because $[u, v] \in L_{1}(\Omega) \hookrightarrow H^{2}(\Omega)^{*}$. The well-defined operator Φ is evidently compact and symmetric. The domain Ω fulfils the assumptions enabling us to apply Lemma 1 from [?] due to which $\Phi: H^{2}(\Omega)^{2} \rightarrow W_{p}^{2}(\Omega), 2<p<\infty$ and

$$
\begin{equation*}
\|\Phi(u, v)\|_{W_{p}^{2}(\Omega)} \leq c\|u\|_{H^{2}(\Omega)}\|v\|_{W_{p}^{1}(\Omega)} \forall u \in H^{2}(\Omega), v \in W_{p}^{1}(\Omega) \tag{9}
\end{equation*}
$$

The right-hand side of the equation (??) represents the linear bounded functional over $\dot{H}^{2}(\Omega)$ and hence the operator $L: H^{2}(\Omega) \mapsto \dot{H}^{2}(\Omega)$ is uniquely defined. Moreover it is compact due to the compact imbedding $H^{1}(\Omega) \hookrightarrow \hookrightarrow H^{2}(\Omega)$. Further it fulfils $L: H^{2}(\Omega) \mapsto W_{p}^{2}(\Omega), 2<p<\infty$ and

$$
\begin{equation*}
\|L u\|_{W_{p}^{2}(\Omega)} \leq c\|u\|_{H^{2}(\Omega)} \forall u \in H^{2}(\Omega) \tag{10}
\end{equation*}
$$

The Airy stress function v can be expressed in the form

$$
v=-E_{1} \partial_{t}\left(\frac{1}{2} \Phi(u, u)+L u\right)-E_{0}\left(\frac{1}{2} \Phi(u, u)+L u\right)
$$

and we reformulate the system (??),(??) into the following variational inequality:
Problem \mathcal{P}. Find $u \in \mathcal{K}$ such that $\dot{u} \in L_{2}\left(I ; H^{2}(\Omega)\right)$ and the inequality

$$
\begin{align*}
& \int_{Q}\left(E_{1} A(\dot{u}, y-u)+E_{0} A(u, y-u)\right) d x d t \\
+ & \int_{Q}\left[u, E_{1} \partial_{t}\left(\frac{1}{2} \Phi(u, u)+L u\right)+E_{0}\left(\frac{1}{2} \Phi(u, u)+L u\right)\right](y-u) d x d t \\
+ & \int_{Q} \Delta_{k}\left(E_{1} \partial_{t}\left(\frac{1}{2} \Phi(u, u)+L u\right)+E_{0}\left(\frac{1}{2} \Phi(u, u)+L u\right)\right)(y-u) d x d t \tag{11}\\
- & \int_{Q}(a \nabla \dot{u} \cdot \nabla(\dot{y}-\dot{u})+\dot{u}(\dot{y}-\dot{u})) d x d t+\int_{\Omega}(a \nabla \dot{u} \cdot \nabla(y-u)+\dot{u}(y-u))(T, \cdot) d x \\
\geq & \int_{\Omega}\left(a \nabla u_{1} \cdot \nabla\left(y(0, \cdot)-u_{0}\right)+u_{1}\left(y(0, \cdot)-u_{0}\right)\right) d x+\int_{Q} f\left(y_{1}-u\right) d x d t
\end{align*}
$$

is satisfied for any $y \in \mathcal{K}$.

For any $\eta>0$ we define the penalized problem
Problem \mathcal{P}_{η}. Find $u \in H^{1,2}(Q)$ such that $\dot{u} \in L_{2}\left(I ; H^{2}(\Omega)\right)$, $\ddot{u} \in L_{2}\left(I ; H^{1}(\Omega)\right)$, the equation

$$
\begin{align*}
& \int_{Q}\left(\ddot{u} z+a \nabla \ddot{u} \cdot \nabla z+E_{1} A(\dot{u}, z)+E_{0} A(u, z)\right) d x d t \\
+ & \int_{Q}\left[u, E_{1} \partial_{t}\left(\frac{1}{2} \Phi(u, u)+L u\right)+E_{0}\left(\frac{1}{2} \Phi(u, u)+L u\right)\right] z d x d t \tag{12}\\
+ & \int_{Q} \Delta_{k}\left(E_{1} \partial_{t}\left(\frac{1}{2} \Phi(u, u)+L u\right)+E_{0}\left(\frac{1}{2} \Phi(u, u)+L u\right)\right) z d x d t \\
= & \int_{Q}\left(f+\eta^{-1} u^{-}\right) z d x d t
\end{align*}
$$

holds for any $z \in L_{2}\left(I ; H^{2}(\Omega)\right)$ and the conditions (??) remain valid.
Applying the Galerkin method, we obtain in a similar way as in [?] the existence and uniqueness of a solution to the penalized problem with the a priori estimates

$$
\begin{align*}
& \|\dot{u}\|_{L_{2}\left(I ; H^{2}(\Omega)\right)}^{2}+\|\dot{u}\|_{L_{\infty}\left(I ; H^{1}(\Omega)\right)}^{2}+\|u\|_{L_{\infty}\left(I ; H^{2}(\Omega)\right)}^{2} \\
& +\left\|\partial_{t} \Phi(u, u)\right\|_{L_{2}\left(I ; H^{2}(\Omega)\right)}^{2}+\left\|\partial_{t} L u\right\|_{L_{2}\left(I ; H^{2}(\Omega)\right)}^{2} \leq c \equiv c\left(f, u_{0}, u_{1}\right) \tag{13}
\end{align*}
$$

Moreover the estimates (??), (??) imply

$$
\begin{equation*}
\left\|\partial_{t} \Phi(u, u)\right\|_{L_{2}\left(I ; W_{p}^{2}(\Omega)\right)}+\left\|\partial_{t} L u\right\|_{L_{2}\left(I ; W_{p}^{2}(\Omega)\right)} \leq c_{p} \equiv c_{p}\left(f, u_{0}, u_{1}\right) \forall p>2 \tag{14}
\end{equation*}
$$

The estimates are obviously η independent. Since for a fixed $\eta>0$ the penalty term $\eta^{-1} u^{-}$belongs to $H^{1}(Q)$, this together with (??) and (??) yields an estimate of $\ddot{u}-a \Delta \ddot{u}$ in $L_{2}\left(I ; H^{2}(\Omega)^{*}\right)$. Applying the a priori estimates of solutions to the penalized problem we obtain

Theorem 2.1 Let $f \in L_{2}(Q), u_{i} \in H^{2}(\Omega), i=0,1$. Then there exists a solution $u \in H^{1,2}(Q)$ of the contact Problem \mathcal{P}.

Proof. We perform the limit process $\eta \searrow 0$ and write u_{η} for the solution of the problem \mathcal{P}_{η}. To get the crucial estimate for the penalty, we put $z=1$ in (??). We get

$$
\int_{Q} \eta^{-1} u_{\eta}^{-} d x d t=\int_{Q}\left(\ddot{u}_{\eta}-f\right) d x d t=\int_{Q}\left(\dot{u}_{\eta}(T, \cdot)-u_{1}\right) d x-\int_{Q} f d x d t
$$

and the estimate

$$
\begin{equation*}
\left\|\eta^{-1} u_{\eta}^{-}\right\|_{L_{1}(Q)} \leq c\left(f, u_{0}, u_{1}\right) \tag{15}
\end{equation*}
$$

which is independent of η. The standard imbedding $H^{2}(\Omega) \hookrightarrow L_{1}(\Omega)$ and the a priori estimates (??) and (??) imply for the functional φ_{η} given as

$$
\begin{equation*}
\varphi_{\eta}: w \mapsto \int_{Q} a \nabla \dot{u}_{\eta} \nabla w+\dot{u}_{\eta} w d x d t \tag{16}
\end{equation*}
$$

the estimate $\left\|\dot{\varphi}_{\eta}\right\|_{L_{1}\left(I ; H^{2}(\Omega)^{*}\right)} \leq c$.
Applying Lemma 1.1 we obtain that the system $\left\{\varphi_{\eta} ; \eta>0\right\}$ is relatively compact in $L_{2}\left(I ; H^{1}(\Omega)^{*}\right)$.
The a priori estimates (??), (??), the last relative compactness and the standard theory of linear elliptic equations yield the existence of a sequence $\eta_{k} \searrow 0$ such that for $u_{k} \equiv u_{\eta_{k}}$ the following convergence hold for any real $p \geq 1$:

$$
\begin{align*}
& \dot{u}_{k} \rightharpoonup \dot{u} \text { in } L_{2}\left(I ; H^{2}(\Omega)\right) \\
& \dot{u}_{k} \rightarrow \dot{u} \text { in } L_{2}\left(I ; W_{p}^{1}(\Omega)\right) \\
& u_{k} \rightarrow u \text { in } C\left(I ; W_{p}^{1}(\Omega)\right), \tag{17}\\
& \frac{1}{2} \partial_{t} \Phi\left(u_{k}, u_{k}\right)+\partial_{t} L u_{k} \rightharpoonup \frac{1}{2} \partial_{t} \Phi(u, u)+\partial_{t} L u \text { in } L_{2}\left(I ; W_{p}^{2}(\Omega)\right) .
\end{align*}
$$

The crucial strong convergence of the derivatives is the consequence of the relative compactness of $\left\{\varphi_{\eta} ; \eta>0\right\}$ and of the first weak convergence in (??) (see [?]) for details. Inserting the
test function $z=y-u_{k}$ in (??) for $y \in \mathcal{K}$, performing the integration by parts in the terms containing \ddot{u}, applying the convergence (??) and the weak lower semicontinuity verifies that the limit u is a solution of the original problem \mathcal{P}.

Remark 2.2 The initial-boundary value problem for a dynamic contact of a clamped shell with Dirichlet zero boundary for deflections can be formulated and solved analogously as in the case of the viscoelastic plate in [?].

References

[1] I. Bock: On the semidiscretization and linearization of a pseudoparabolic von Kármán system for viscoelastic plates.Math. Meth. Appl. Sci. 29 (2006), 557-573.
[2] I. Bock: On a pseudoparabolic system for a viscoelastic shallow shell. PAMM Proc. Appl. Math. Mech. 6 (2006), 621-622.
[3] I. Bock and J. Jarušek: Unilateral dynamic contact of viscoelastic von Kármán plates. Advances in Math. Sci. and Appl. 16 (2006), 175-187. Viscosity or
[4] I. Bock and J. Jarušek: Solvability of dynamic contact problems for elastic von Kármán plates. SIAM J. Math. Anal. 41 (2009), 37-45.
[5] C. Eck, J. Jarušek and M. Krbec: Unilateral Contact Problems in Mechanics. Variational Methods and Existence Theorems. Monographs \& Textbooks in Pure \& Appl. Math. No. 270 (ISBN 1-57444-629-0). Chapman \& Hall/CRC (Taylor \& Francis Group), Boca Raton - London - New York - Singapore 2005.
[6] J. Jarušek, J. Málek, J. Nečas and V. Šverák: Variational inequality for a viscous drum vibrating in a presence of an obstacle. Rend. Mat., Ser. VII 12 (1992), 943-958.
[7] H. Koch and A. Stachel: Global existence of classical solutions to the dynamical von Kármán equations. Math. Methods in Applied Sciences 16 (1993), 581-586.
[8] VOROVIČ, I.I.- LEBEDEV, I.P.: Existence of solutions in nonlinear theory of shallow shells, Applied Mathematics and Mechanics 36, No. 4 (1972), pp.691-704.

Author's addresses: Igor Bock: Institute of Informatics and Mathematics FEI,
Slovak University of Technology, Ilkovičova 3, 81219 Bratislava 1, Slovak Republic; e-mail: igor.bock@stuba.sk, Jiří Jarušek: Mathematical Institute CAS, Žitná 25, 11567 Praha 1, Czech Republic; e-mail: jarusek@math.cas.cz

[^0]: *The work presented here is supported by the Ministry of Education of Slovak Republic under VEGA grant 1/0021/10 and by the Czech Academy of Sciences under grant IAA 100750802 and under the Institutional research plan AVOZ 10190503, by the Czech Ministry of Education under grant MEB 0810045.

