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Abstract: We deal with the optimal control problem governed by a hyperbolic variational inequality
describing the perpendicular vibrations of a beam clamped on the left end with a rigid obstacle at the
right end. A variable thickness of a beam plays the role of a control parameter.

1 Introduction

The dynamic contact problems are not frequently solved in the framework of variational inequal-
ities. For the elastic problems there is only a very limited amount of results available (cf. [4] and
there cited literature). The inner dynamic obstacle problem for the plate with moderately large
deflections has been solved in [1]. We deal here with an optimal design problem for an elastic
beam in dynamic contact with a rigid obstacle. A variable thickness of a beam plays the role
of a control variable. We have solved such problem in [2]with the fixed convex set of admissible
deflections expressing the boundary contact. The admissible sets of deflections depends here on
the control variable due to the character of the unilateral condition. A similar problem for the
stationary elliptic state variational inequality has been considered in [3]. In contrast to it there
is no uniqueness result in the dynamic case and hence the minimum will depend both on the
thickness as the control and the deflection as the state variable. Solving the state hyperbolic
variational inequality we apply the method of penalization in the same way as in [1].

2 Solving of the state problem

2.1 The state problem formulation

We consider an elastic beam of the length L > 0. Its variable thickness is expressed by the
positive function x 7→ 2e(x), x ∈ [0, L], the constant d > 0 involves the material and geometrical
characteristics. We assume for simplicity ρ ≡ 1 the density of the material and the beam free on
the both ends. The rigid inner obstacle is characterized by the function Φ : [0, L] 7→ R. If f is a
perpendicular load acting on the beam, u0, v0 the initial displacement and velocity respectively,
then the vertical displacement u solves the following hyperbolic initial-boundary value problem
with an unknown contact force g and the complementary conditions.

e(x)ü+ d(e3(x)uxx)xx = f(t, x) + g(t, x) in (0, T )× (0, L), (1)

uxx(t, 0) = [e3(x)uxx]x(t, 0) = uxx(t, L) = [e3(x)uxx]x(t, L) = 0, t ∈ (0, T ], (2)

u ≥ Φ+
1
2
e, g ≥ 0, (u− Φ− 1

2
e)g = 0, in (0, T )× (0, L], (3)

u(0, x) = u0(x), u̇(0, x) = v0(x), x ∈ (0, L). (4)

We set I = (0, T ), Q = I × (0, L). and introduce the Hilbert spaces

H ≡ L2(0, L), V ≡ H2(0, L) = {y ∈ L2(0, L) : y′′ ∈ L2(0, L)}
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with the inner products and the norms

(y, z) =
∫ L

0
y(x)z(x) dx, |y|0 = (y, y)1/2, y, z ∈ H;

((y, z)) =
∫ L

0
[y(x)z(x) + y′′(x)z′′(x)] dx, ‖y‖ = ((y, y))1/2, y, z ∈ V.

Further we set V = L∞(I, V ),

K(e) = {y ∈ V : y(t, x) ≥ Φ(x) +
1
2
e(x) for a.e. (t, x) ∈ (0, T ]× [0, L]},

K(e) = {v ∈ V : v(x) ≥ Φ(x) +
1
2
e(x) for all x ∈ [0, L]}

and assume

f ∈ L2(Q), Φ ∈ V, u0 ∈ K(e), v0 ∈ L2(Ω); e ∈ H2[0, L], 0 < e1 ≤ e ≤ e2.

Definition 2.1 Function u ∈ K(e) is a weak solution of the problem (1)-(4) if ü ∈ V∗, the
initial conditions (4) are fulfilled in a certain generalized sense and the inequality

〈〈ü, e(y − u)〉〉+ d

∫
Q
e3(x)uxx(y − u)xx dt dx ≥

∫
Q
f(x)(y(t, x)− u(t, x)) dt dx (5)

holds for any y ∈ K(e).

The expression 〈〈·, ·〉〉 means the duality between the spaces V∗ and V as the extension of the
inner product in the space L2(Q).

2.2 Penalization

We define for ε > 0 the penalized problem in the variational form:

To find uε ∈ V such that üε ∈ L2(I;V ∗) and

〈〈üε, ey〉〉+
∫
Q

[
de3(x)uεxxyxx]− ε−1(uε − Φ(x)− 1

2
e(x))−y

]
dt dx =

∫
Q
fy dt dx

∀y ∈ L2(I, V ),
(6)

uε(0, x) = u0(x), u̇ε(0, x) = v0(x), x ∈ (0, L). (7)

We verify the existence of a solution to the penalized problem and useful a priori estimates by
the Galerkin method.

Theorem 2.2 There exists a solution u ≡ uε of the problem (6), (7) fulfilling the estimate

‖u̇ε‖2L∞(I,L2(0,L)) + ‖uε‖2L∞(I,V ) ≤ C(d, e1, e2, u0, v0, f),

C(d, e1, e2, u0, v0, f) =
(

2
e1

+
1
de3

1

)(
e2|v0|20 + de3

2‖u0‖2 +
2
e1
‖f‖2L1(I,L2(0,L))

)
.

(8)

Proof. Let us denote by {wi ∈ V ; i ∈ N} a basis of V . We construct the Galerkin approximation
um of a solution in a form

um(t) =
m∑
i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N,

∫ L

0

(
e(x)ümwi + de3(x)umxxwixx − ε−1(u−m − Φ(x)− 1

2
e(x))wi

)
dx =∫ L

0
f(t)wi dx, i = 1, ...,m,

(9)

um(0) = u0m, u̇m(0) = v0m, u0m → u0 in V and v0m → v0 in L2(0, L). (10)
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The solution um : [0, T ] 7→ R exists due the existence theory for the 2nd-order system of ordinary
differential equations. After multiplying the equation (9) by α̇i(t), summing up with respect to
i and integrating we obtain the estimate

‖u̇m‖2C(Ī;L2(0,L)) + ‖um‖2C(Ī;V ) + ε−1‖u−m − Φ−
1
2
e‖2C(Ī;L2(0,L)) ≤ c1. (11)

From (9) we obtain directly the estimate

‖üm‖2L2(I;W ∗m) ≤ cε, m ∈ N, (12)

where Wm is the linear hull of {wi}mi=1.

We proceed with the convergence of the Galerkin approximation. Applying the estimates
(11), (12), the density of

⋃∞
m=1Wm and the compact imbedding theorem we obtain for a sub-

sequence of {um} (denoted again by {um}) a function u ∈ V ∩H1(Q) with ü ∈ L2(I;W ∗) and
the convergences

üm ⇀ ü in L2(I;W ∗),
u̇m ⇀∗ u̇ in L∞(I;L2(0, L)),
um ⇀∗ u in V,
um → u in C(Ī;H2−δ(0, L)) ∀δ > 0.

(13)

Let µ ∈ N, zµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. The convergence process (13) implies

〈〈üε, ezµ〉〉+
∫
Q

[
deuxxzµxx − ε−1(uε − Φ−

1
2
e)−zµ

]
dt dx =

∫
Q
fzµ dt dx

Functions {zµ} form a dense subset of the set L2(I;V ), hence a function u ≡ uε fulfils the
identity (6) and ü ∈ L2(I;V ∗). The initial conditions (7) follow due to (10) and the proof of the
existence of a solution is complete.

In order to achieve the a priori estimate (8) we put

y =

{
u̇ε for t ≤ s
0 for t > s

in (6) with an arbitrary s ∈ I. After performing the integration we obtain the inequalities

e1|u̇ε|20(s) + de3
1‖uε‖2(s) ≤ e2|v0|20 + de3

2‖u0‖2 + 2
∫ s

0
(f, u̇ε)(t) dt

≤ e2|v0|20 + de3
2‖u0‖2 +

2
e1
‖f‖2L1(I;L2(0,L)) +

1
2
e1‖u̇ε‖2L∞(I,L2(0,L)) ∀s ∈ I

and the estimate (8) follows.

2.3 The limit process to the original state problem

The a priori estimates and the convergence process derived in the previous section imply the
estimate

‖u̇ε‖2L∞(I,L2(0,L)) + ‖uε‖2L∞(I,V ) + ε−1‖u−ε − Φ−
1
2
e‖2C(Ī,L2(0,L)) ≤ c2. (14)

Let us set y(t, x) ≡ 1 in (6). The estimate (14) implies the estimates

0 ≤ ε−1

∫
Q

(uε − Φ−
1
2
e)− dt dx ≤ c3, ‖üε‖L1(I;V ∗) ≤ c4. (15)
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Then there exists a sequence εn ↘ 0 , a function u ∈ V ∩H1(Q) and a functional g ∈ (L∞(Q))∗

such that ü ∈ (L∞(I, V ))∗, u̇ ∈ L∞(I, L2(0, L))∩Cw(Ī , L2(0, L)) and for un ≡ uεn the following
convergences hold

ün ⇀
∗ ü in (L∞(I;V ))∗

u̇n ⇀ u̇ in L2(I;V ),
un ⇀

∗ u in V,
un → u in C(Ī , H2−δ) ∀δ > 0,

u−n − Φ−
1
2
e→ 0 in C(Ī , L2(Ω)),

ε−1
n (u−n − Φ−

1
2
e) ⇀∗ g in (L∞(Q))∗.

(16)

Let us define the operator A(e) : V 7→ V ∗ by

〈A(e)u, y〉∗ = d

∫ L

0
e3(x)uxxyxx dx, u, y ∈ V. (17)

The performed convergences implies that the limit function u fulfils the equation in V ∗

eü+A(e)u = f + g, (18)

where eü ∈ V∗ is defined by 〈〈eü, y〉〉 = 〈〈ü, ey〉〉 ∀y ∈ V.
The limit functional g represents a contact force acting between the beam and the obstacle.

It fulfils 〈〈g, u− Φ− 1
2e〉〉 = 0 and 〈〈g, z〉〉 ≥ 0 ∀z ∈ V z ≥ 0 due to the last convergence in (16)

and hence the inequality (5) is fulfilled. The initial condition for a deflection u is fulfilled in the
space H2−δ(Ω) and the initial velocity id fulfilled in a generalized sense. Hence we have proved

Theorem 2.3 Let u0 ∈ K, v0 ∈ L2(0, L), f ∈ L2(Q), Φ ∈ V, e ∈ V, 0 < e1 ≤ e ≤ e2.
Then there exists a weak solution of the State problem (1)-(4) fulfilling the estimate

‖u̇‖2L∞(I,L2(0,L)) + ‖u‖2L∞(I,V ) ≤ C(d, e1, e2, u0, v0, f) (19)

with the constant C(d, e1, e2, u0, v0, f) defined in (8).

3 Optimal control problem

We consider a cost functional
J : V × C2([0, L]) 7→ R+

fulfilling
un ⇀ u in V, en → e in C2([0, L])⇒ J(u, e) ≤ lim inf

n→∞
J(un, en).

Let
Ead = {e ∈ H3(0, L) : 0 < e1 ≤ e(x) ≤ e2 ∀x ∈ [0, L], ‖e‖H3(0,L) ≤ e3}

be the set of admissible thicknesses. We remark that Ead is compact in H2(0, L).
Before formulating the Optimal control problem we introduce the space of functions

W = {v ∈ L∞(I;L2(0, L)) : ∃ v̇ ∈ L∞(I;V )∗ and {vn} ⊂ H1(I;L2(0, L))
such that vn ⇀∗ v in L∞(I;L2(0, L)), v̇n ⇀∗ v̇ in L∞(I;V )∗}.

Optimal control problem P : To find a couple (u∗, e∗) ∈ Uad(e∗)× Ead such that

J(u∗, e∗) ≤ J(u, e) ∀(u, e) ∈ Uad(e)× Ead, (20)

Uad(e) = {u ∈ K(e) : u̇ ∈ W, u is a weak solution of (1)− (4),

‖u̇‖2L∞(I;L2(0,L)) + ‖u‖2L∞(I;V ) ≤ C1}
(21)
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with C1 ≥ C(d, e1, e2, u0, v0, f) - a positive constant defined in (8).
The construction of a solution u ∈ K(e) using the penalization method in Theorem 2.3

implies that Uad(e) 6= ∅ for every e ∈ Ead.

Theorem 3.1 There exists a solution of the Optimal control problem P.

Proof. Let {(un, en)} ∈ Uad(en)× Ead be a minimizing sequence i.e.

lim
n→∞

J(un, en) = inf
Uad(e)×Ead

J(u, e).

There exists (u∗, e∗) ∈ K(e∗)× Ead and a subsequence denoted again by (un, en) such that

en → e∗ in H2(0, T ), un ⇀ u∗ in V. (22)

The elements un ∈ Uad(en) are weak solutions of the State problem (1)-(4) with e ≡ en and fulfil

〈〈ün, eny〉〉+
∫
Q

[
de3
n(x)unxxyxx − f(t, x)y(t, x)

]
dt dx = 〈〈gn, y〉〉 ∀ y ∈ V (23)

with functionals gn ∈ V∗, n ∈ N fulfilling

〈〈gn, v〉〉 ≥ 0 ∀ v ∈ V, v ≥ 0; 〈〈gn, un − Φ−
1
2
en〉〉 = 0. (24)

After inserting y(x) ≡ 1 in (23) we obtain∫ L

0
[en(x)(u̇n(T, x)− v0(x)) dx−

∫
Q
f(t, x) dt dx = 〈〈gn, 1〉〉.

Using the definition of the admissible set Uad and the property (24) of the functionals gn we
arrive to the estimates

‖gn‖V∗ ≤ c5, ‖ün‖V∗ ≤ c6.

Then there exist the subsequence of {un, en, gn} (denoted by {un, en, gn}) fulfilling the conver-
gence (22) and gn ⇀

∗ g in V∗ such that u∗ ∈ Uad(e∗) with a contact functional g ≡ g∗. Lower
semicontinuity properties of the functional J imply

J(u∗, e∗) ≤ lim inf
n→∞

J(un, en) = inf
Uad(e)×Ead

J(u, e).

Then
J(u∗, e∗) = min

Uad(e)×Ead

J(u, e)

and the proof is complete.

Remark 3.2 The family of convex sets {K(e)} fulfils the ”continuity” condition

en → e0 in H2(Ω)⇒ K(e0) = Limn→∞K(en), ej ∈ Ead, j = 0, 1, ..., n, ...,

where the symbol Lim means the special type of convergence introduced by U.Mosco in [5], see
also [3]. This property was used in the proof of the previous theorem.

Remark 3.3 We have chosen an admissible set Uad(e) in a form (21) because there are no
uniqueness and no a priori estimates of solutions of the state variational inequality. The smooth-
ness assumption e ∈ H3(0, L) is inevitable due to the appearance of the control parameter e in
the term connected with the second derivative ü ∈ (L∞(I, V ))∗.
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