Boundary Value Problems for Ordinary Differential Equations

1. Solve the boundary value problem $\quad-u^{\prime \prime}+u=f(x)$,
a) $0<x<2, f(x)=1, u(0)=0,(2)=-1$,
b) $0<x<2, f(x)=1, u^{\prime}(0)=0, u^{\prime}(2)+u(2)=0$,
c) $0<x<1, f(x)=e^{2 x}, u(0)=1, u(2)=2$
d) $0<x<1, f(x)=e^{-x}, u(0)=0, u^{\prime}(2)=0$.
2. Solve the boundary value problem after expressing the equation into the form $\left(p(x) u^{\prime}\right)^{\prime}=f(x)$:

$$
x u^{\prime \prime}+u^{\prime}=f(x),
$$

a) $1<x<2, f(x)=x, u^{\prime}(1)=0, u(2)=0$,
b) $1<x<2, f(x)=x, u^{\prime}(1)-u(1)=0, u^{\prime}(2)=0$,
c) $1<x<3, f(x)=2-x, u^{\prime}(1)=u^{\prime}(3)=0$ (infinitely many solutions)
3. Solve the boundary value problem

$$
x^{2} u^{\prime \prime}+2 x u^{\prime}=f(x),
$$

a) $1<x<2, f(x)=1, u(1)=0, u^{\prime}(2)=-1$,
b) $1<x<2, f(x)=x, u^{\prime}(1)-u(1)=0, u^{\prime}(2)=0$,
4. Solve the Sturm-Lioville problem for eigenvalues and eigenfunctions $u^{\prime \prime}+\lambda u=0$, with boundary conditions
a) $0<x<4, u(0)=u(4)=0$,
b) $0<x<4, u^{\prime}(0)=u^{\prime}(4)=0$,
c) $0<x<4, u(0)=u^{\prime}(4)=0$,
d) $0<x<4, u^{\prime}(0)=u(4)=0$,
e) $0<x<\frac{\pi}{2}, u(0)=u\left(\frac{\pi}{2}\right)=0$,
f) $0<x<1, u(0)-u^{\prime}(0)=u(1)=0$

