Boundary Value Problems for Elliptic Equations:

1. Solve the boundary value problems using the Fourier method

$$
\triangle u=0,0<x<1,0<y<1,
$$

a) $u(0, y)=\frac{\partial u}{\partial x}(1, y)=u(x, 0)=0, u(x, 1)=x$
b) $u(0, y)=\frac{\partial u}{\partial x}(1, y)=u(x, 0)=0, \frac{\partial u}{\partial y}(x, 1)=x$
c) $\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, 1)=u(1, y)=0, u(0, y)=y^{2}$
d) $u(x, 0)=u(x, 1)=0, u(0, y)=\sin \pi y, \frac{\partial u}{\partial x}(1, y)=1$.
2. Solve the boundary value problems using the Fourier method

$$
\Delta u=0,0<x<2,0<y<\pi
$$

a) $u(x, 0)=\frac{\partial u}{\partial y}(x, \pi)=u(0, y)=0, u(2, y)=y$
b) $\frac{\partial u}{\partial y} u(x, 0)=u(x, \pi)=u(0, y)=0, \frac{\partial u}{\partial x}(2, y)=y$
c) $\frac{\partial u}{\partial x}(0, y)=\frac{\partial u}{\partial x}(2, y)=u(x, \pi)=0, u(x, 0)=\sin x$
d) $u(0, y)=u(2, y)=0, u(x, 0)=u(x, \pi)=x^{2}-2 x$.
3. Solve the boundary value problems using the polar coordinates $\triangle u=0, r^{2}=x^{2}+y^{2}<4$.
a) $u(2, \phi)=1$
b) $u(2, \phi)=\phi^{2}-2 \pi \phi$
c) $u(2, \phi)=|\sin \phi|$
4. Solve the boundary value problems using the polar coordinates $\triangle u=0, x^{2}+y^{2}<1, y>0$.
a) $u(x, 0)=0, u\left(x, \sqrt{1-x^{2}}\right)=1-x^{2}$
b) $u(x, 0)=0, \frac{\partial u}{\partial \vec{n}}\left(x, \sqrt{1-x^{2}}\right)=1$,
with $\vec{n}=\vec{r}$ the unique outer normal vector .
5. Solve the boundary value problems

$$
\Delta u=0, x^{2}+y^{2}<4, x>0, y>0 .
$$

a) $u(x, 0)=u(0, y)=0, u\left(x, \sqrt{4-x^{2}}\right)=x(=2 \cos \phi)$
b) $u(x, 0)=\frac{\partial u}{\partial x}(0, y)=0, u\left(x, \sqrt{4-x^{2}}\right)=1$
6. Solve the boundary value problems

$$
\triangle u=0,1<x^{2}+y^{2}<4, y>0
$$

a) $u(x, 0)=0, u\left(x, \sqrt{1-x^{2}}\right)=1, u\left(x, \sqrt{4-x^{2}}\right)=2$
b) $u(x, 0)=0, \quad u\left(x, \sqrt{1-x^{2}}\right)=1, \frac{\partial u}{\partial \vec{n}}\left(x, \sqrt{4-x^{2}}\right)=1$
7. Solve the eigenvalue and eigenfunction problem

$$
\triangle u(x, y)+\lambda u(x, y)=0,0<x<\pi, 0<y<2,
$$

with boundary conditions
a) $u(0, y)=u(\pi, y)=u(x, 0)=u(x, 2)=0$,
b) $u(0, y)=u(\pi, y)=\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, 2)=0$,
c) $u(0, y)=\frac{\partial u}{\partial x}(\pi, y)=\frac{\partial u}{\partial y}(x, 0)=u(x, 2)=0$,
8. Solve the boundary value problems

$$
-\triangle u=f(x, y), \quad(x, y) \in \Omega
$$

for the deflection of a squared membrane $\Omega=(0,1) \times(0,1)$, if
a) $f(x, y)=1,\left.u\right|_{\partial \Omega}=0$,
b) $f(x, y)=1, u(0, y)=u(1, y)=\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, 1)=0$,
c) $f(x, y)=x y, u(0, y)=u(1, y)=u(x, 0)=\frac{\partial u}{\partial y}(x, 1)=0$.

Apply the double Fourier series with respect to eigenfunctions of the problem $\Delta u+\lambda u=0$ with the same boundary conditions.
9. Solve the boundary value problems

$$
-\triangle u=f(x, y),(x, y) \in \Omega
$$

for the deflection of the rectangular membrane $\Omega=(0, \pi) \times(0,1)$, if
a) $f(x, y)=x,\left.u\right|_{\partial \Omega}=0$,
b) $f(x, y)=y, u(0, y)=u(\pi, y)=\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, 1)=0$,
c) $f(x, y)=y \sin x, u(0, y)=u(\pi, y)=u(x, 0)=\frac{\partial u}{\partial y}(x, 1)=0$.

