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Introduction

Let D = {w ∈ C : |w| < 1}, T = {ω ∈ C : |ω| = 1},
C+ = {z ∈ C : Im z > 0}.

Hp(D) is the Hardy space on D.

Definition 1
The Hardy space Hp(C+) (0 < p <∞) on C+ is the
space of all analytic functions F : C+ → C such that

‖F‖Hp(C+) := sup
y>0

( ∫ ∞
−∞
|F (x+ iy)|pdx

) 1
p <∞.

H∞(C+) is the space of all bounded and analytic
functions on C+ with ‖F‖H∞(C+) = sup

y>0
|F (x+ iy)|.
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Introduction

γ : C+ → D, γ(z) = z−iz+i is the usual conformal
mapping.

Lp(T) := Lp([0, 2π], dm), Lp(R) := Lp(R, dx) Banach
spaces (p > 1).
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An isomorphism between spaces on D and C+

At first we recall well known an isomorphism between
the space Lp(T) and Lp(R).

Lemma 2 (Nikolski, Operators, ....)

The mapping

(Upf)(t) =
(
1

π(t+i)2
)1/p
f(γ(t)), t ∈ R (1)

is an isometric isomorphism of the space Lp(T) onto
Lp(R) for 1 6 p <∞.
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An isomorphism between spaces on D and C+

Lemma 3
An operator U∞ : L∞(T)→ L∞(R) defined by

U∞ϕ = ϕ ◦ γ (2)

is an isometric isomorphism.
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An isomorphism between spaces on D and C+

We will use the duality between L1(T) and L∞(T) and
also between L1(R) and L∞(R) hence we have to
define the isomorphism between L1(T) and L1(R)
differently than (1) of lemma 2.

Lemma 4
An operator U1 : L1(T)→ L1(R) defined by

(U1f)(t) = 1π
1
1+t2 f(γ(t)) (3)

is an isometric isomorphism.
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An isomorphism between spaces on D and C+

The above definition of U1 let see U∞ given by (2) of
lemma 3 as a dual action to (U1)−1 : L1(R)→ L1(T).

Theorem 5 (WM, Ptak)

Let U∞ : L∞(T)→ L∞(R) be given by U∞ϕ = ϕ ◦ γ and
U1 : L1(T)→ L1(R) given by (U1f)(t) = 1π

1
1+t2 f(γ(t)),

then
(a) 〈ϕ, f〉 = 〈U∞ϕ,U1f〉 for all ϕ ∈ L∞(T), f ∈ L1(T).
(b) U∞ = (U−11 )∗.
(c) U∞ is a weak ∗ homeomorphism.
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An isomorphism between spaces on D and C+

Lemma 6

If ϕ ∈ L∞(T) and Mϕ be a multiplication operator on
the space L2(T) then

U2MϕU
−1
2 =Mϕ◦γ.
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An isomorphism between spaces on D and C+

Now, we identify spaces Hp(D) with Hp(C+).

Lemma 7 (Nikolski, Operators, ....)
The mapping

(Upf)(z) =
(
1

π(z+i)2
)1/p
f(γ(z)), z ∈ C+ (4)

is an isometric isomorphism of the space Hp(D) onto
Hp(C+) for 1 6 p <∞.

Lemma 8
An operator U∞ : H∞(D)→ H∞(C+) given by
U∞g = g ◦ γ, γ ∈ H∞(D) is an isometric isomorphism.
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Toeplitz operators

Definition 9
For each ϕ ∈ L∞(T) (Φ ∈ L∞(R)) a Toeplitz operator
on H2(D) (H2(C+)) with symbol ϕ (Φ) is an operator
Tϕ (TΦ) defined by

Tϕf = PH2(D)(ϕf), f ∈ H2(D)(
TΦF = PH2(C+)(ΦF ), F ∈ H

2(C+)
)

where PH2(D) (PH2(C+)) is the orthogonal projection of
L2(T) onto H2(D) (L2(R) onto H2(C+)).
If ϕ ∈ H∞(D) (Φ ∈ H∞(C+)) then Tϕ (TΦ) is called
analytic Toeplitz operator.
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Toeplitz operators

By T (D) (T (C+)) we denote the space of all Toeplitz
operators and by A(D) (A(C+)) the algebra of all
analytic Toeplitz operators on H2(D) (H2(C+)).
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Toeplitz operators

Let H be a Hilbert space. By B(H) we denote the set
of all linear and bounded operators on H and by
B1(H) the set of all trace-class operators on H.

ξ : L∞(T)→ B(H2(D)) (η : L∞(R)→ B(H2(C+)))
given by ξ(ϕ) = Tϕ (η(Φ) = TΦ) is a symbol map of the
Toeplitz operator on H2(D) (H2(C+)).
The relationship between the Toeplitz operators on
H2(D) and H2(C+) is characterized as follows.
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Toeplitz operators

Theorem 10

If Ũ2 : B(H2(D))→ B(H2(C+)) is given by
Ũ2(A) = U2AU−12 then

(a) U2TϕU−12 = Tϕ◦γ, ϕ ∈ L∞(T).
(b) U2(T (D))U−12 = T (C+), U2(A(D))U−12 = A(C+).
(c) Ũ2 is a weak ∗ homeomorphism.
(d) The following diagram commutes

L∞(T)
U∞

��

ξ // T (D)
Ũ2

��

L∞(R) η // T (C+)

(e) η is a weak ∗ homeomorphism.
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Toeplitz operators

Assume that X, Y are a Banach spaces.

X∗ is the predual space of X and the dual action is
given by 〈·, ·〉.
If U : X → Y is linear then an operator U∗ : Y∗ → X∗ is
defined by the following formula

〈x, U∗y∗〉 = 〈Ux, y∗〉 for all x ∈ X, y∗ ∈ Y∗ . (5)

S⊥ is the preannihilator of S ⊂ X.
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Toeplitz operators

Since B1(H2(D)) = B(H2(D))∗ and T (D) is a weak ∗
closed subspace of B(H2(D))

and also
B1(H2(C+)) = B(H2(C+))∗ and T (C+) is a weak ∗
closed subspace of B(H2(C+)) we have that

T (D)∗ = B1(H2(D))/T (D)⊥

and
T (C+)∗ = B1(H2(C+))/T (C+)⊥.

The relationship between this spaces is given by the
following Theorem.
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Toeplitz operators

Theorem 11 (WM, Ptak)

If Ũ2 is given by Ũ2(A) = U2AU−12 , A ∈ B(H2(D)) and
U1 is given by (U1f)(t) = 1π

1
1+t2 f(γ(t)), f ∈ L

1(T),
then

(a) 〈Tϕ, ξ−1∗ (f)〉 = 〈TU∞ϕ, η−1∗ (U1f)〉 for all ϕ ∈ L∞(T),
f ∈ L1(T).

(b) The following diagram commutes

T (C+)∗
Ũ2∗

��

η∗ // L1(R)
U−11

��

T (D)∗ ξ∗
// L1(T)
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Main result

Definition 12
The reflexive closure of a subspace S ⊂ B(H) is given
by

refS = {B ∈ B(H) : Bh ∈ Sh for all h ∈ H}.

It is clear that S ⊂ refS ⊂ B(H).
S is said to be reflexive if refS = S and transitive if
refS = B(H).
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Main result

Theorem 13 (Azoff, Ptak, 1998)
Suppose that B ⊂ T (D) is a weak ∗ closed. Then the
following statements are equivalent.

(1) B is not transitive.
(2) There is a function f : T→ C such that f ∈ L1(T),
log |f | ∈ L1(T) and

∫
T
ϕfdm = 0 for all Tϕ ∈ B.

(3) B is reflexive.
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Main result

Theorem 14 (WM, Ptak)
Suppose that F ⊂ T (C+) is a weak ∗ closed. Then the
following statements are equivalent.

(1) F is not transitive.
(2) There is a function F : R→ C such that
F ∈ L1(R), log |F | ∈ L1

(
R, dt1+t2

)
and

∫
R
ΦFdt = 0

for all TΦ ∈ F .
(3) F is reflexive.
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Some examples

◦ A(C+) is reflexive.

◦ If F is inner function on C+ then TFA(C+) is
reflexive.

◦ If F ∈ L∞(R) and
∫
R

∣∣∣ log |F (t)|∣∣∣ dt1+t2 =∞ then
TFA(C+) is transitive.
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