On the reflexivity and transitivity of the Toeplitz operators on the upper half-plane

Wojciech Młocek

Joint work with M. Ptak

University of Agriculture in Krakow

Nemecká, September 5-10, 2011

$$
\begin{aligned}
& \text { Let } \mathbb{D}=\{w \in \mathbb{C}:|w|<1\}, \mathbb{T}=\{\omega \in \mathbb{C}:|\omega|=1\} \text {, } \\
& \mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \mathbb{D}=\{w \in \mathbb{C}:|w|<1\}, \mathbb{T}=\{\omega \in \mathbb{C}:|\omega|=1\}, \\
& \mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\} . \\
& H^{p}(\mathbb{D}) \text { is the Hardy space on } \mathbb{D} .
\end{aligned}
$$

Let $\mathbb{D}=\{w \in \mathbb{C}:|w|<1\}, \mathbb{T}=\{\omega \in \mathbb{C}:|\omega|=1\}$,
$\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.
$H^{p}(\mathbb{D})$ is the Hardy space on \mathbb{D}.

Definition 1

The Hardy space $H^{p}\left(\mathbb{C}_{+}\right)(0<p<\infty)$ on \mathbb{C}_{+}is the space of all analytic functions $F: \mathbb{C}_{+} \rightarrow \mathbb{C}$ such that

$$
\|F\|_{H^{p}\left(\mathbb{C}_{+}\right)}:=\sup _{y>0}\left(\int_{-\infty}^{\infty}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}}<\infty .
$$

Let $\mathbb{D}=\{w \in \mathbb{C}:|w|<1\}, \mathbb{T}=\{\omega \in \mathbb{C}:|\omega|=1\}$,
$\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.
$H^{p}(\mathbb{D})$ is the Hardy space on \mathbb{D}.

Definition 1

The Hardy space $H^{p}\left(\mathbb{C}_{+}\right)(0<p<\infty)$ on \mathbb{C}_{+}is the space of all analytic functions $F: \mathbb{C}_{+} \rightarrow \mathbb{C}$ such that

$$
\|F\|_{H^{p}\left(\mathbb{C}_{+}\right)}:=\sup _{y>0}\left(\int_{-\infty}^{\infty}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}}<\infty
$$

$H^{\infty}\left(\mathbb{C}_{+}\right)$is the space of all bounded and analytic functions on \mathbb{C}_{+}with $\|F\|_{H^{\infty}\left(\mathbb{C}_{+}\right)}=\sup _{y>0}|F(x+i y)|$.

$\gamma: \mathbb{C}_{+} \rightarrow \mathbb{D}, \gamma(z)=\frac{z-i}{z+i}$ is the usual conformal

 mapping.$\gamma: \mathbb{C}_{+} \rightarrow \mathbb{D}, \gamma(z)=\frac{z-i}{z+i}$ is the usual conformal mapping.
$L^{p}(\mathbb{T}):=L^{p}([0,2 \pi], d m), L^{p}(\mathbb{R}):=L^{p}(\mathbb{R}, d x)$ Banach spaces $(p \geqslant 1)$.

At first we recall well known an isomorphism between the space $L^{p}(\mathbb{T})$ and $L^{p}(\mathbb{R})$.

At first we recall well known an isomorphism between the space $L^{p}(\mathbb{T})$ and $L^{p}(\mathbb{R})$.

Lemma 2 (Nikolski, Operators,)

The mapping

$$
\begin{equation*}
\left(U_{p} f\right)(t)=\left(\frac{1}{\pi(t+i)^{2}}\right)^{1 / p} f(\gamma(t)), t \in \mathbb{R} \tag{1}
\end{equation*}
$$

is an isometric isomorphism of the space $L^{p}(\mathbb{T})$ onto $L^{p}(\mathbb{R})$ for $1 \leqslant p<\infty$.

Lemma 3

An operator $U_{\infty}: L^{\infty}(\mathbb{T}) \rightarrow L^{\infty}(\mathbb{R})$ defined by

$$
\begin{equation*}
U_{\infty} \varphi=\varphi \circ \gamma \tag{2}
\end{equation*}
$$

is an isometric isomorphism.

We will use the duality between $L^{1}(\mathbb{T})$ and $L^{\infty}(\mathbb{T})$ and also between $L^{1}(\mathbb{R})$ and $L^{\infty}(\mathbb{R})$ hence we have to define the isomorphism between $L^{1}(\mathbb{T})$ and $L^{1}(\mathbb{R})$ differently than (1) of lemma 2.

We will use the duality between $L^{1}(\mathbb{T})$ and $L^{\infty}(\mathbb{T})$ and also between $L^{1}(\mathbb{R})$ and $L^{\infty}(\mathbb{R})$ hence we have to define the isomorphism between $L^{1}(\mathbb{T})$ and $L^{1}(\mathbb{R})$ differently than (1) of lemma 2.

Lemma 4

An operator $U_{1}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{R})$ defined by

$$
\begin{equation*}
\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t)) \tag{3}
\end{equation*}
$$

is an isometric isomorphism.

The above definition of U_{1} let see U_{∞} given by (2) of lemma 3 as a dual action to $\left(U_{1}\right)^{-1}: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{T})$.

The above definition of U_{1} let see U_{∞} given by (2) of lemma 3 as a dual action to $\left(U_{1}\right)^{-1}: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{T})$.

Theorem 5 (WM, Ptak)

Let $U_{\infty}: L^{\infty}(\mathbb{T}) \rightarrow L^{\infty}(\mathbb{R})$ be given by $U_{\infty} \varphi=\varphi \circ \gamma$ and $U_{1}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{R})$ given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t))$, then

The above definition of U_{1} let see U_{∞} given by (2) of lemma 3 as a dual action to $\left(U_{1}\right)^{-1}: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{T})$.

Theorem 5 (WM, Ptak)

Let $U_{\infty}: L^{\infty}(\mathbb{T}) \rightarrow L^{\infty}(\mathbb{R})$ be given by $U_{\infty} \varphi=\varphi \circ \gamma$ and $U_{1}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{R})$ given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t))$, then
(a) $\langle\varphi, f\rangle=\left\langle U_{\infty} \varphi, U_{1} f\right\rangle$ for all $\varphi \in L^{\infty}(\mathbb{T}), f \in L^{1}(\mathbb{T})$.

The above definition of U_{1} let see U_{∞} given by (2) of lemma 3 as a dual action to $\left(U_{1}\right)^{-1}: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{T})$.

Theorem 5 (WM, Ptak)

Let $U_{\infty}: L^{\infty}(\mathbb{T}) \rightarrow L^{\infty}(\mathbb{R})$ be given by $U_{\infty} \varphi=\varphi \circ \gamma$ and $U_{1}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{R})$ given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t))$, then
(a) $\langle\varphi, f\rangle=\left\langle U_{\infty} \varphi, U_{1} f\right\rangle$ for all $\varphi \in L^{\infty}(\mathbb{T}), f \in L^{1}(\mathbb{T})$.
(b) $U_{\infty}=\left(U_{1}^{-1}\right)^{*}$.

The above definition of U_{1} let see U_{∞} given by (2) of lemma 3 as a dual action to $\left(U_{1}\right)^{-1}: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{T})$.

Theorem 5 (WM, Ptak)

Let $U_{\infty}: L^{\infty}(\mathbb{T}) \rightarrow L^{\infty}(\mathbb{R})$ be given by $U_{\infty} \varphi=\varphi \circ \gamma$ and $U_{1}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{R})$ given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t))$, then
(a) $\langle\varphi, f\rangle=\left\langle U_{\infty} \varphi, U_{1} f\right\rangle$ for all $\varphi \in L^{\infty}(\mathbb{T}), f \in L^{1}(\mathbb{T})$.
(b) $U_{\infty}=\left(U_{1}^{-1}\right)^{*}$.
(c) U_{∞} is a weak* homeomorphism.

Lemma 6

If $\varphi \in L^{\infty}(\mathbb{T})$ and M_{φ} be a multiplication operator on the space $L^{2}(\mathbb{T})$ then

$$
U_{2} M_{\varphi} U_{2}^{-1}=M_{\varphi \circ \gamma} .
$$

Now, we identify spaces $H^{p}(\mathbb{D})$ with $H^{p}\left(\mathbb{C}_{+}\right)$.

Now, we identify spaces $H^{p}(\mathbb{D})$ with $H^{p}\left(\mathbb{C}_{+}\right)$.

Lemma 7 (Nikolski, Operators,)

The mapping

$$
\begin{equation*}
\left(U_{p} f\right)(z)=\left(\frac{1}{\pi(z+i)^{2}}\right)^{1 / p} f(\gamma(z)), \quad z \in \mathbb{C}_{+} \tag{4}
\end{equation*}
$$

is an isometric isomorphism of the space $H^{p}(\mathbb{D})$ onto $H^{p}\left(\mathbb{C}_{+}\right)$for $1 \leqslant p<\infty$.

Now, we identify spaces $H^{p}(\mathbb{D})$ with $H^{p}\left(\mathbb{C}_{+}\right)$.

Lemma 7 (Nikolski, Operators,)

The mapping

$$
\begin{equation*}
\left(U_{p} f\right)(z)=\left(\frac{1}{\pi(z+i)^{2}}\right)^{1 / p} f(\gamma(z)), \quad z \in \mathbb{C}_{+} \tag{4}
\end{equation*}
$$

is an isometric isomorphism of the space $H^{p}(\mathbb{D})$ onto $H^{p}\left(\mathbb{C}_{+}\right)$for $1 \leqslant p<\infty$.

Lemma 8

An operator $U_{\infty}: H^{\infty}(\mathbb{D}) \rightarrow H^{\infty}\left(\mathbb{C}_{+}\right)$given by $U_{\infty} g=g \circ \gamma, \gamma \in H^{\infty}(\mathbb{D})$ is an isometric isomorphism.

Definition 9

For each $\varphi \in L^{\infty}(\mathbb{T})\left(\Phi \in L^{\infty}(\mathbb{R})\right)$ a Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$with symbol $\varphi(\Phi)$ is an operator $T_{\varphi}\left(T_{\Phi}\right)$ defined by

Definition 9

For each $\varphi \in L^{\infty}(\mathbb{T})\left(\Phi \in L^{\infty}(\mathbb{R})\right)$ a Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$with symbol $\varphi(\Phi)$ is an operator $T_{\varphi}\left(T_{\Phi}\right)$ defined by

$$
\begin{gathered}
T_{\varphi} f=P_{H^{2}(\mathbb{D})}(\varphi f), f \in H^{2}(\mathbb{D}) \\
\left(T_{\Phi} F=P_{H^{2}\left(\mathbb{C}_{+}\right)}(\Phi F), \quad F \in H^{2}\left(\mathbb{C}_{+}\right)\right)
\end{gathered}
$$

Definition 9

For each $\varphi \in L^{\infty}(\mathbb{T})\left(\Phi \in L^{\infty}(\mathbb{R})\right)$ a Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$with symbol $\varphi(\Phi)$ is an operator $T_{\varphi}\left(T_{\Phi}\right)$ defined by

$$
\begin{gathered}
T_{\varphi} f=P_{H^{2}(\mathbb{D})}(\varphi f), f \in H^{2}(\mathbb{D}) \\
\left(T_{\Phi} F=P_{H^{2}\left(\mathbb{C}_{+}\right)}(\Phi F), \quad F \in H^{2}\left(\mathbb{C}_{+}\right)\right)
\end{gathered}
$$

where $P_{H^{2}(\mathbb{D})}\left(P_{H^{2}\left(\mathbb{C}_{+}\right)}\right)$is the orthogonal projection of $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{D})\left(L^{2}(\mathbb{R})\right.$ onto $\left.H^{2}\left(\mathbb{C}_{+}\right)\right)$.

Definition 9

For each $\varphi \in L^{\infty}(\mathbb{T})\left(\Phi \in L^{\infty}(\mathbb{R})\right)$ a Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$with symbol $\varphi(\Phi)$ is an operator $T_{\varphi}\left(T_{\Phi}\right)$ defined by

$$
\begin{gathered}
T_{\varphi} f=P_{H^{2}(\mathbb{D})}(\varphi f), f \in H^{2}(\mathbb{D}) \\
\left(T_{\Phi} F=P_{H^{2}\left(\mathbb{C}_{+}\right)}(\Phi F), \quad F \in H^{2}\left(\mathbb{C}_{+}\right)\right)
\end{gathered}
$$

where $P_{H^{2}(\mathbb{D})}\left(P_{H^{2}\left(\mathbb{C}_{+}\right)}\right)$is the orthogonal projection of $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{D})\left(L^{2}(\mathbb{R})\right.$ onto $\left.H^{2}\left(\mathbb{C}_{+}\right)\right)$.
If $\varphi \in H^{\infty}(\mathbb{D})\left(\Phi \in H^{\infty}\left(\mathbb{C}_{+}\right)\right)$then $T_{\varphi}\left(T_{\Phi}\right)$ is called analytic Toeplitz operator.

By $\mathcal{T}(\mathbb{D})\left(\mathcal{T}\left(\mathbb{C}_{+}\right)\right)$we denote the space of all Toeplitz operators and by $\mathcal{A}(\mathbb{D})\left(\mathcal{A}\left(\mathbb{C}_{+}\right)\right)$the algebra of all analytic Toeplitz operators on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$.

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the set of all linear and bounded operators on \mathcal{H} and by $\mathcal{B}_{1}(\mathcal{H})$ the set of all trace-class operators on \mathcal{H}.

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the set of all linear and bounded operators on \mathcal{H} and by $\mathcal{B}_{1}(\mathcal{H})$ the set of all trace-class operators on \mathcal{H}.
$\xi: L^{\infty}(\mathbb{T}) \rightarrow \mathcal{B}\left(H^{2}(\mathbb{D})\right)\left(\eta: L^{\infty}(\mathbb{R}) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)\right)$ given by $\xi(\varphi)=T_{\varphi}\left(\eta(\Phi)=T_{\Phi}\right)$ is a symbol map of the Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$.

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the set of all linear and bounded operators on \mathcal{H} and by $\mathcal{B}_{1}(\mathcal{H})$ the set of all trace-class operators on \mathcal{H}. $\xi: L^{\infty}(\mathbb{T}) \rightarrow \mathcal{B}\left(H^{2}(\mathbb{D})\right)\left(\eta: L^{\infty}(\mathbb{R}) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)\right)$ given by $\xi(\varphi)=T_{\varphi}\left(\eta(\Phi)=T_{\Phi}\right)$ is a symbol map of the Toeplitz operator on $H^{2}(\mathbb{D})\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$.

The relationship between the Toeplitz operators on $H^{2}(\mathbb{D})$ and $H^{2}\left(\mathbb{C}_{+}\right)$is characterized as follows.

Theorem 10

$$
\begin{aligned}
& \text { If } \widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right) \text {is given by } \\
& \widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1} \text { then }
\end{aligned}
$$

Theorem 10

If $\widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$is given by
$\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}$ then
(a) $U_{2} T_{\varphi} U_{2}^{-1}=T_{\varphi \circ \gamma}, \varphi \in L^{\infty}(\mathbb{T})$.

Theorem 10

If $\widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$is given by
$\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}$ then
(a) $U_{2} T_{\varphi} U_{2}^{-1}=T_{\varphi \circ \gamma}, \varphi \in L^{\infty}(\mathbb{T})$.
(b) $U_{2}(\mathcal{T}(\mathbb{D})) U_{2}^{-1}=\mathcal{T}\left(\mathbb{C}_{+}\right), U_{2}(\mathcal{A}(\mathbb{D})) U_{2}^{-1}=\mathcal{A}\left(\mathbb{C}_{+}\right)$.

Theorem 10

If $\widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$is given by
$\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}$ then
(a) $U_{2} T_{\varphi} U_{2}^{-1}=T_{\varphi \circ \gamma}, \varphi \in L^{\infty}(\mathbb{T})$.
(b) $U_{2}(\mathcal{T}(\mathbb{D})) U_{2}^{-1}=\mathcal{T}\left(\mathbb{C}_{+}\right), U_{2}(\mathcal{A}(\mathbb{D})) U_{2}^{-1}=\mathcal{A}\left(\mathbb{C}_{+}\right)$.
(c) \widetilde{U}_{2} is a weak* homeomorphism.

Theorem 10

If $\widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$is given by
$\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}$ then
(a) $U_{2} T_{\varphi} U_{2}^{-1}=T_{\varphi \circ \gamma}, \varphi \in L^{\infty}(\mathbb{T})$.
(b) $U_{2}(\mathcal{T}(\mathbb{D})) U_{2}^{-1}=\mathcal{T}\left(\mathbb{C}_{+}\right), U_{2}(\mathcal{A}(\mathbb{D})) U_{2}^{-1}=\mathcal{A}\left(\mathbb{C}_{+}\right)$.
(c) \widetilde{U}_{2} is a weak* homeomorphism.
(d) The following diagram commutes

$$
\begin{aligned}
& L^{\infty}(\mathbb{T}) \xrightarrow{\xi} \mathcal{T}(\mathbb{D}) \\
& U_{\infty} \downarrow \\
& L^{\infty}(\mathbb{R}) \xrightarrow[\eta]{\longrightarrow} \mathcal{T}\left(\mathbb{C}_{+}\right)
\end{aligned}
$$

Theorem 10

If $\widetilde{U}_{2}: \mathcal{B}\left(H^{2}(\mathbb{D})\right) \rightarrow \mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$is given by
$\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}$ then
(a) $U_{2} T_{\varphi} U_{2}^{-1}=T_{\varphi \circ \gamma}, \varphi \in L^{\infty}(\mathbb{T})$.
(b) $U_{2}(\mathcal{T}(\mathbb{D})) U_{2}^{-1}=\mathcal{T}\left(\mathbb{C}_{+}\right), U_{2}(\mathcal{A}(\mathbb{D})) U_{2}^{-1}=\mathcal{A}\left(\mathbb{C}_{+}\right)$.
(c) \widetilde{U}_{2} is a weak* homeomorphism.
(d) The following diagram commutes

$$
\begin{array}{lr}
L^{\infty}(\mathbb{T}) \xrightarrow{\xi} \mathcal{T}(\mathbb{D}) \\
U_{\infty} \downarrow & \mid \tilde{U}_{2} \\
L^{\infty}(\mathbb{R}) \xrightarrow[\eta]{\longrightarrow} \mathcal{T}\left(\mathbb{C}_{+}\right)
\end{array}
$$

(e) η is a weak* homeomorphism.

Assume that X, Y are a Banach spaces.

Assume that X, Y are a Banach spaces. X_{*} is the predual space of X and the dual action is given by $\langle\cdot, \cdot\rangle$.

Assume that X, Y are a Banach spaces. X_{*} is the predual space of X and the dual action is given by $\langle\cdot, \cdot\rangle$.
If $U: X \rightarrow Y$ is linear then an operator $U_{*}: Y_{*} \rightarrow X_{*}$ is defined by the following formula

$$
\begin{equation*}
\left\langle x, U_{*} y_{*}\right\rangle=\left\langle U x, y_{*}\right\rangle \text { for all } x \in X, y_{*} \in Y_{*} . \tag{5}
\end{equation*}
$$

Assume that X, Y are a Banach spaces. X_{*} is the predual space of X and the dual action is given by $\langle\cdot, \cdot\rangle$. If $U: X \rightarrow Y$ is linear then an operator $U_{*}: Y_{*} \rightarrow X_{*}$ is defined by the following formula

$$
\begin{equation*}
\left\langle x, U_{*} y_{*}\right\rangle=\left\langle U x, y_{*}\right\rangle \text { for all } x \in X, y_{*} \in Y_{*} . \tag{5}
\end{equation*}
$$

\mathcal{S}_{\perp} is the preannihilator of $\mathcal{S} \subset X$.

Since $\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right)=\mathcal{B}\left(H^{2}(\mathbb{D})\right)_{*}$ and $\mathcal{T}(\mathbb{D})$ is a weak* closed subspace of $\mathcal{B}\left(H^{2}(\mathbb{D})\right)$

Since $\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right)=\mathcal{B}\left(H^{2}(\mathbb{D})\right)_{*}$ and $\mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed subspace of $\mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and also $\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)=\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)_{*}$ and $\mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed subspace of $\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$

Since $\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right)=\mathcal{B}\left(H^{2}(\mathbb{D})\right)_{*}$ and $\mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed subspace of $\mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and also
$\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)=\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)_{*}$ and $\mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed subspace of $\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$we have that

$$
\mathcal{T}(\mathbb{D})_{*}=\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right) / \mathcal{T}(\mathbb{D})_{\perp}
$$

Since $\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right)=\mathcal{B}\left(H^{2}(\mathbb{D})\right)_{*}$ and $\mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed subspace of $\mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and also
$\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)=\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)_{*}$ and $\mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed subspace of $\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$we have that

$$
\mathcal{T}(\mathbb{D})_{*}=\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right) / \mathcal{T}(\mathbb{D})_{\perp}
$$

and

$$
\mathcal{T}\left(\mathbb{C}_{+}\right)_{*}=\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right) / \mathcal{T}\left(\mathbb{C}_{+}\right)_{\perp} .
$$

Since $\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right)=\mathcal{B}\left(H^{2}(\mathbb{D})\right)_{*}$ and $\mathcal{T}(\mathbb{D})$ is a weak* closed subspace of $\mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and also
$\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)=\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)_{*}$ and $\mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed subspace of $\mathcal{B}\left(H^{2}\left(\mathbb{C}_{+}\right)\right)$we have that

$$
\mathcal{T}(\mathbb{D})_{*}=\mathcal{B}_{1}\left(H^{2}(\mathbb{D})\right) / \mathcal{T}(\mathbb{D})_{\perp}
$$

and

$$
\mathcal{T}\left(\mathbb{C}_{+}\right)_{*}=\mathcal{B}_{1}\left(H^{2}\left(\mathbb{C}_{+}\right)\right) / \mathcal{T}\left(\mathbb{C}_{+}\right)_{\perp} .
$$

The relationship between this spaces is given by the following Theorem.

Theorem 11 (WM, Ptak)

If \widetilde{U}_{2} is given by $\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}, A \in \mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and U_{1} is given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t)), f \in L^{1}(\mathbb{T})$,
then

Theorem 11 (WM, Ptak)

If \widetilde{U}_{2} is given by $\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}, A \in \mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and U_{1} is given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t)), f \in L^{1}(\mathbb{T})$,
then
(a) $\left\langle T_{\varphi}, \xi_{*}^{-1}(f)\right\rangle=\left\langle T_{U_{\infty} \varphi}, \eta_{*}^{-1}\left(U_{1} f\right)\right\rangle$ for all $\varphi \in L^{\infty}(\mathbb{T})$, $f \in L^{1}(\mathbb{T})$.

Theorem 11 (WM, Ptak)

If \widetilde{U}_{2} is given by $\widetilde{U}_{2}(A)=U_{2} A U_{2}^{-1}, A \in \mathcal{B}\left(H^{2}(\mathbb{D})\right)$ and U_{1} is given by $\left(U_{1} f\right)(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} f(\gamma(t)), f \in L^{1}(\mathbb{T})$,
then
(a) $\left\langle T_{\varphi}, \xi_{*}^{-1}(f)\right\rangle=\left\langle T_{U_{\infty} \varphi}, \eta_{*}^{-1}\left(U_{1} f\right)\right\rangle$ for all $\varphi \in L^{\infty}(\mathbb{T})$, $f \in L^{1}(\mathbb{T})$.
(b) The following diagram commutes

$$
\begin{aligned}
& \mathcal{T}\left(\mathbb{C}_{+}\right)_{*} \xrightarrow{\eta_{*}} L^{1}(\mathbb{R}) \\
& \widetilde{U}_{2 *} \downarrow \\
& \mathcal{T}(\mathbb{D})_{*} \xrightarrow[\xi_{*}]{\longrightarrow} L^{1}(\mathbb{T})
\end{aligned}
$$

Definition 12

The reflexive closure of a subspace $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ is given by

$$
\operatorname{ref} \mathcal{S}=\{B \in \mathcal{B}(\mathcal{H}): B h \in \overline{\mathcal{S} h} \text { for all } h \in \mathcal{H}\}
$$

Definition 12

The reflexive closure of a subspace $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ is given by

$$
\operatorname{ref} \mathcal{S}=\{B \in \mathcal{B}(\mathcal{H}): B h \in \overline{\mathcal{S} h} \text { for all } h \in \mathcal{H}\}
$$

It is clear that $\mathcal{S} \subset \operatorname{ref} \mathcal{S} \subset \mathcal{B}(\mathcal{H})$.

Definition 12

The reflexive closure of a subspace $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ is given by

$$
\operatorname{ref} \mathcal{S}=\{B \in \mathcal{B}(\mathcal{H}): B h \in \overline{\mathcal{S} h} \text { for all } h \in \mathcal{H}\}
$$

It is clear that $\mathcal{S} \subset \operatorname{ref} \mathcal{S} \subset \mathcal{B}(\mathcal{H})$.
\mathcal{S} is said to be reflexive if $\operatorname{ref} \mathcal{S}=\mathcal{S}$ and transitive if ref $\mathcal{S}=\mathcal{B}(\mathcal{H})$.

Theorem 13 (Azoff, Ptak, 1998)

Suppose that $\mathcal{B} \subset \mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed. Then the following statements are equivalent.

Theorem 13 (Azoff, Ptak, 1998)

Suppose that $\mathcal{B} \subset \mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed. Then the following statements are equivalent.
(1) \mathcal{B} is not transitive.

Theorem 13 (Azoff, Ptak, 1998)

Suppose that $\mathcal{B} \subset \mathcal{T}(\mathbb{D})$ is a weak* closed. Then the following statements are equivalent.
(1) \mathcal{B} is not transitive.
(2) There is a function $f: \mathbb{T} \rightarrow \mathbb{C}$ such that $f \in L^{1}(\mathbb{T})$, $\log |f| \in L^{1}(\mathbb{T})$ and $\int_{\mathbb{T}} \varphi f d m=0$ for all $T_{\varphi} \in \mathcal{B}$.

Theorem 13 (Azoff, Ptak, 1998)

Suppose that $\mathcal{B} \subset \mathcal{T}(\mathbb{D})$ is a weak ${ }^{*}$ closed. Then the following statements are equivalent.
(1) \mathcal{B} is not transitive.
(2) There is a function $f: \mathbb{T} \rightarrow \mathbb{C}$ such that $f \in L^{1}(\mathbb{T})$, $\log |f| \in L^{1}(\mathbb{T})$ and $\int_{\mathbb{T}} \varphi f d m=0$ for all $T_{\varphi} \in \mathcal{B}$.
(3) \mathcal{B} is reflexive.

Theorem 14 (WM, Ptak)

Suppose that $\mathcal{F} \subset \mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed. Then the following statements are equivalent.

Theorem 14 (WM, Ptak)

Suppose that $\mathcal{F} \subset \mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed. Then the following statements are equivalent. (1) \mathcal{F} is not transitive.

Theorem 14 (WM, Ptak)

Suppose that $\mathcal{F} \subset \mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed. Then the following statements are equivalent.
(1) \mathcal{F} is not transitive.
(2) There is a function $F: \mathbb{R} \rightarrow \mathbb{C}$ such that $F \in L^{1}(\mathbb{R}), \log |F| \in L^{1}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$ and $\int_{\mathbb{R}} \Phi F d t=0$ for all $T_{\Phi} \in \mathcal{F}$.

Theorem 14 (WM, Ptak)

Suppose that $\mathcal{F} \subset \mathcal{T}\left(\mathbb{C}_{+}\right)$is a weak* closed. Then the following statements are equivalent.
(1) \mathcal{F} is not transitive.
(2) There is a function $F: \mathbb{R} \rightarrow \mathbb{C}$ such that $F \in L^{1}(\mathbb{R}), \log |F| \in L^{1}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$ and $\int_{\mathbb{R}} \Phi F d t=0$ for all $T_{\Phi} \in \mathcal{F}$.
(3) \mathcal{F} is reflexive.

- $\mathcal{A}\left(\mathbb{C}_{+}\right)$is reflexive.
- $\mathcal{A}\left(\mathbb{C}_{+}\right)$is reflexive.
- If \bar{F} is inner function on \mathbb{C}_{+}then $T_{F} \mathcal{A}\left(\mathbb{C}_{+}\right)$is reflexive.
- $\mathcal{A}\left(\mathbb{C}_{+}\right)$is reflexive.
- If \bar{F} is inner function on \mathbb{C}_{+}then $T_{F} \mathcal{A}\left(\mathbb{C}_{+}\right)$is reflexive.
- If $F \in L^{\infty}(\mathbb{R})$ and $\int_{\mathbb{R}}|\log | F(t)| | \frac{d t}{1+t^{2}}=\infty$ then $T_{F} \mathcal{A}\left(\mathbb{C}_{+}\right)$is transitive.

E E. A. Azoff, M. Ptak, A Dichotomy for Linear Spaces of Toeplitz Operators, J. Funct. Anal. 156, 411-428 (1998).
(R. Koosis, Introduction to H_{p} Spaces, Cambridge University Press, Cambridge 1980.

囯 N. K. Nikolski, Operators, Functions, and Systems: an easy reading, Vol. 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, American Mathematical Society, 2002.

