Ergodic properties

 of operators
in some semi-Hilbertian spaces

authors: W. Majdak, A.-N. Secelean, L. Suciu speaker: Witold Majdak

Nemecká, 6.09.2011

Cesàro ergodicity

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence
$\left\{M_{n}(T)\right\}_{n=1}^{\infty}$ of Cesàro averages

of T is convergent in the strong operator topology, i.e.,

where P is the oblique projection such that

Cesàro ergodicity

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\left\{M_{n}(T)\right\}_{n=1}^{\infty}$ of Cesàro averages

$$
M_{n}(T)=\frac{1}{n} \sum_{j=0}^{n-1} T^{j}
$$

of T is convergent in the strong operator topology, i.e.,

where P is the oblique projection such that

Cesàro ergodicity

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\left\{M_{n}(T)\right\}_{n=1}^{\infty}$ of Cesàro averages

$$
M_{n}(T)=\frac{1}{n} \sum_{j=0}^{n-1} T^{j}
$$

of T is convergent in the strong operator topology, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{j} h=P h, \quad h \in \mathcal{H}
$$

where P is the oblique projection such that

Cesàro ergodicity

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\left\{M_{n}(T)\right\}_{n=1}^{\infty}$ of Cesàro averages

$$
M_{n}(T)=\frac{1}{n} \sum_{j=0}^{n-1} T^{j}
$$

of T is convergent in the strong operator topology, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{j} h=P h, \quad h \in \mathcal{H}
$$

where P is the oblique projection such that

$$
\mathcal{N}(P)=\overline{\mathcal{R}(I-T)} \text { and } \mathcal{R}(P)=\mathcal{N}(I-T)
$$

If T and T^{*} are Cesàro ergodic, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{* j} h=P^{*} h, \quad h \in \mathcal{H}
$$

Orthogonally mean ergodic operator If P is an orthogonal projection, then T is called an orthogonally mean ergodic operator.

Theorem
An operator $T \in B(\mathcal{H})$ is Cesàro ergodic if and only if
it is similar to an orthogonally mean ergodic operator on \mathcal{H}.

If T and T^{*} are Cesàro ergodic, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{* j} h=P^{*} h, \quad h \in \mathcal{H} .
$$

Orthogonally mean ergodic operator

If P is an orthogonal projection, then T is called an orthogonally mean ergodic operator.

Theorem

An operator $T \in B(\mathcal{F})$ is Cesàro ergodic if and only if
it is similar to an orthogonally mean ergodic operator on \mathcal{H}

If T and T^{*} are Cesàro ergodic, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{* j} h=P^{*} h, \quad h \in \mathcal{H} .
$$

Orthogonally mean ergodic operator

If P is an orthogonal projection, then T is called an orthogonally mean ergodic operator.

Theorem

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if and only if it is similar to an orthogonally mean ergodic operator on \mathcal{H}.

Example

Let $C_{1, .}(\mathcal{H})$ be the class of all power bounded operators $T \in \mathcal{B}(\mathcal{H})$ such that

$$
\inf _{n \in \mathbb{N}}\left\|T^{n} h\right\|>0, \quad h \in \mathcal{H} \backslash\{0\}
$$

It turns out that if $T \in C_{1,} .(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators
(Tools from papers of L. Kérchy).

Classical results

Example

Let $C_{1, .}(\mathcal{H})$ be the class of all power bounded operators
$T \in \mathcal{B}(\mathcal{H})$ such that

$$
\inf _{n \in \mathbb{N}}\left\|T^{n} h\right\|>0, \quad h \in \mathcal{H} \backslash\{0\}
$$

It turns out that if $T \in C_{1,} .(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators
(Tools from papers of L. Kérchy).

Example

Let $C_{1, .}(\mathcal{H})$ be the class of all power bounded operators
$T \in \mathcal{B}(\mathcal{H})$ such that

$$
\inf _{n \in \mathbb{N}}\left\|T^{n} h\right\|>0, \quad h \in \mathcal{H} \backslash\{0\}
$$

It turns out that if $T \in C_{1,} .(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators
(Tools from papers of L. Kérchy).

Classical results
$\|T\| \leq 1 \Longrightarrow T$ is orthogonally mean ergodic
$\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|<\infty \quad \Longrightarrow \quad T$ is Cesàro ergodic.

Example

Let $C_{1, .}(\mathcal{H})$ be the class of all power bounded operators $T \in \mathcal{B}(\mathcal{H})$ such that

$$
\inf _{n \in \mathbb{N}}\left\|T^{n} h\right\|>0, \quad h \in \mathcal{H} \backslash\{0\}
$$

It turns out that if $T \in C_{1,} .(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators
(Tools from papers of L. Kérchy).

Classical results
$\|T\| \leq 1 \quad \Longrightarrow \quad T$ is orthogonally mean ergodic,

Example

Let $C_{1, .}(\mathcal{H})$ be the class of all power bounded operators
$T \in \mathcal{B}(\mathcal{H})$ such that

$$
\inf _{n \in \mathbb{N}}\left\|T^{n} h\right\|>0, \quad h \in \mathcal{H} \backslash\{0\}
$$

It turns out that if $T \in C_{1,} .(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators
(Tools from papers of L. Kérchy).

Classical results

$\|T\| \leq 1 \quad \Longrightarrow \quad T$ is orthogonally mean ergodic, $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|<\infty \quad \Longrightarrow \quad T$ is Cesàro ergodic.

We assume that $A \in \mathcal{B}(\mathcal{H})$ is a positive operator, i.e.,

$$
\langle A h, h\rangle \geq 0, \quad h \in \mathcal{H} .
$$

We put

We assume that $A \in \mathcal{B}(\mathcal{H})$ is a positive operator, i.e.,

$$
\langle A h, h\rangle \geq 0, \quad h \in \mathcal{H}
$$

Such an A induces a positive semidefinite sesquilinear form $\langle\cdot, \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
\langle h, f\rangle_{A}=\langle A h, f\rangle, \quad h, f \in \mathcal{H} .
$$

Denote by $\|\cdot\|_{A}$ the seminorm induced by $\langle\cdot, \cdot\rangle_{A}$, i.e.,

We assume that $A \in \mathcal{B}(\mathcal{H})$ is a positive operator, i.e.,

$$
\langle A h, h\rangle \geq 0, \quad h \in \mathcal{H}
$$

Such an A induces a positive semidefinite sesquilinear form $\langle\cdot, \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
\langle h, f\rangle_{A}=\langle A h, f\rangle, \quad h, f \in \mathcal{H} .
$$

Denote by $\|\cdot\|_{A}$ the seminorm induced by $\langle\cdot, \cdot\rangle_{A}$, i.e.,

$$
\|h\|_{A}=\sqrt{\langle h, h\rangle_{A}}, \quad h \in \mathcal{H} .
$$

We put

We assume that $A \in \mathcal{B}(\mathcal{H})$ is a positive operator, i.e.,

$$
\langle A h, h\rangle \geq 0, \quad h \in \mathcal{H}
$$

Such an A induces a positive semidefinite sesquilinear form $\langle\cdot, \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
\langle h, f\rangle_{A}=\langle A h, f\rangle, \quad h, f \in \mathcal{H} .
$$

Denote by $\|\cdot\|_{A}$ the seminorm induced by $\langle\cdot, \cdot\rangle_{A}$, i.e.,

$$
\|h\|_{A}=\sqrt{\langle h, h\rangle_{A}}, \quad h \in \mathcal{H} .
$$

We put

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

We assume that $A \in \mathcal{B}(\mathcal{H})$ is a positive operator, i.e.,

$$
\langle A h, h\rangle \geq 0, \quad h \in \mathcal{H}
$$

Such an A induces a positive semidefinite sesquilinear form $\langle\cdot, \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
\langle h, f\rangle_{A}=\langle A h, f\rangle, \quad h, f \in \mathcal{H} .
$$

Denote by $\|\cdot\|_{A}$ the seminorm induced by $\langle\cdot, \cdot\rangle_{A}$, i.e.,

$$
\|h\|_{A}=\sqrt{\langle h, h\rangle_{A}}, \quad h \in \mathcal{H} .
$$

We put

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

A-boundedness

$$
\begin{aligned}
& \qquad \mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} . \\
& \text { We equip } \mathcal{B}_{A}(\mathcal{H}) \text { with the seminorm }\|\cdot\| A . \\
& \|T\|_{A}=\sup _{h \in \mathcal{R}(A), h \neq 0} \frac{\|T h\|_{A}}{\|h\|_{A}}=\sup _{\|h\|_{A \leq 1}}\|T h\|_{A} .
\end{aligned}
$$

A-adjoint
For $T \in \mathcal{B}_{A}(\mathcal{H})$, an operator $S \in \mathcal{B}_{A}(\mathcal{H})$ is called an A-adjoint of T if

$$
\langle T h, f\rangle_{A}=\langle h, S f\rangle_{A}, \quad h, f \in \mathcal{H},
$$

i.e., $A S=T^{*} A$.

We say that T is A-selfadjoint if $A T=T^{*} A$.

A-boundedness

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

We equip $\mathcal{B}_{A}(\mathcal{H})$ with the seminorm $\|\cdot\|_{A}$.

$$
\|T\|_{A}=\sup _{h \in \overline{\mathcal{R}}(A), h \neq 0} \frac{\|T h\|_{A}}{\|h\|_{A}}=\sup _{\|h\|_{A} \leq 1}\|T h\|_{A}
$$

A-boundedness

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

We equip $\mathcal{B}_{A}(\mathcal{H})$ with the seminorm $\|\cdot\|_{A}$.

$$
\|T\|_{A}=\sup _{h \in \overline{\mathcal{R}}(A), h \neq 0} \frac{\|T h\|_{A}}{\|h\|_{A}}=\sup _{\|h\|_{A} \leq 1}\|T h\|_{A}
$$

A-adjoint

For $T \in \mathcal{B}_{A}(\mathcal{H})$, an operator $S \in \mathcal{B}_{A}(\mathcal{H})$ is called an A-adjoint of T if
i.e., $A S=T^{*} A$. We say that T is A-selfadjoint if $A T=T^{*} A$.

A-boundedness

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

We equip $\mathcal{B}_{A}(\mathcal{H})$ with the seminorm $\|\cdot\|_{A}$.

$$
\|T\|_{A}=\sup _{h \in \overline{\mathcal{R}(A)}, h \neq 0} \frac{\|T h\|_{A}}{\|h\|_{A}}=\sup _{\|h\|_{A} \leq 1}\|T h\|_{A}
$$

A-adjoint

For $T \in \mathcal{B}_{A}(\mathcal{H})$, an operator $S \in \mathcal{B}_{A}(\mathcal{H})$ is called an A-adjoint of T if

$$
\langle T h, f\rangle_{A}=\langle h, S f\rangle_{A}, \quad h, f \in \mathcal{H}
$$

i.e., $A S=T^{*} A$.

A-boundedness

$$
\mathcal{B}_{A}(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}) \mid \exists c>0 \forall h \in \mathcal{H}:\|T h\|_{A} \leq c\|h\|_{A}\right\} .
$$

We equip $\mathcal{B}_{A}(\mathcal{H})$ with the seminorm $\|\cdot\|_{A}$.

$$
\|T\|_{A}=\sup _{h \in \overline{\mathcal{R}(A)}, h \neq 0} \frac{\|T h\|_{A}}{\|h\|_{A}}=\sup _{\|h\|_{A} \leq 1}\|T h\|_{A}
$$

A-adjoint

For $T \in \mathcal{B}_{A}(\mathcal{H})$, an operator $S \in \mathcal{B}_{A}(\mathcal{H})$ is called an A-adjoint of T if

$$
\langle T h, f\rangle_{A}=\langle h, S f\rangle_{A}, \quad h, f \in \mathcal{H}
$$

i.e., $A S=T^{*} A$.

We say that T is A-selfadjoint if $A T=T^{*} A$.

Existence and uniqueness
If $T \in \mathcal{B}_{A}(\mathcal{H})$, then $S \in \mathcal{B}_{A}(\mathcal{H})$ such that

$$
A S=T^{*} A
$$

need not exist.
Note that $\mathcal{B}_{A^{2}}(\mathcal{H}) \subset \mathcal{B}_{A}(\mathcal{H})$
(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

If $T \in \mathcal{B}_{A^{2}}(\mathcal{H})$, then S exists, but it may not be uniquely

Existence and uniqueness

If $T \in \mathcal{B}_{A}(\mathcal{H})$, then $S \in \mathcal{B}_{A}(\mathcal{H})$ such that

$$
A S=T^{*} A
$$

need not exist.
Note that $\mathcal{B}_{A^{2}}(\mathcal{H}) \subset \mathcal{B}_{A}(\mathcal{H})$
(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

Existence and uniqueness

If $T \in \mathcal{B}_{A}(\mathcal{H})$, then $S \in \mathcal{B}_{A}(\mathcal{H})$ such that

$$
A S=T^{*} A
$$

need not exist.
Note that $\mathcal{B}_{A^{2}}(\mathcal{H}) \subset \mathcal{B}_{A}(\mathcal{H})$
(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

If $T \in \mathcal{B}_{A^{2}}(\mathcal{H})$, then S exists, but it may not be uniquely determined.

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

$$
A T_{A}=T^{*} A, \mathcal{R}\left(T_{A}\right) \subset \overline{\mathcal{R}}(A) \text { and } \mathcal{N}\left(T_{A}\right)=\mathcal{N}\left(T^{*} A\right)
$$

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

$$
L S=R, \mathcal{R}(S) \subset \overline{\mathcal{R}\left(L^{*}\right)} \text { and } \mathcal{N}(S)=\mathcal{N}(R)
$$

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that
$A T_{A}=T^{*} A, \mathcal{R}\left(T_{A}\right) \subset \overline{\mathcal{R}}(A)$ and $\mathcal{N}\left(T_{A}\right)=\mathcal{N}\left(T^{*} A\right)$.

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

$$
L S=R, \mathcal{R}(S) \subset \overline{\mathcal{R}\left(L^{*}\right)} \text { and } \mathcal{N}(S)=\mathcal{N}(R) .
$$

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

$$
L S=R, \mathcal{R}(S) \subset \overline{\mathcal{R}\left(L^{*}\right)} \text { and } \mathcal{N}(S)=\mathcal{N}(R)
$$

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

$$
A T_{A}=T^{*} A, \mathcal{R}\left(T_{A}\right) \subset \overline{\mathcal{R}(A)} \text { and } \mathcal{N}\left(T_{A}\right)=\mathcal{N}\left(T^{*} A\right)
$$

Theorem [R.G. Douglas, 1966]

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:
(i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
(ii) there exists a positive number λ such that $R R^{*} \leq \lambda L L^{*}$,
(iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that $L C=R$.

If (i) holds, then there exists a unique operator $S \in \mathcal{B}(\mathcal{H})$ such that

$$
L S=R, \mathcal{R}(S) \subset \overline{\mathcal{R}\left(L^{*}\right)} \text { and } \mathcal{N}(S)=\mathcal{N}(R)
$$

If T has an A-adjoint S, then $A S=T^{*} A$.
By the Douglas theorem, we can find a unique T_{A} such that

$$
A T_{A}=T^{*} A, \mathcal{R}\left(T_{A}\right) \subset \overline{\mathcal{R}(A)} \text { and } \mathcal{N}\left(T_{A}\right)=\mathcal{N}\left(T^{*} A\right)
$$

A-power boundedness

$T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded if $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|_{A}<\infty$.

Lemma

For $\boldsymbol{T} \subset \mathcal{B}_{A}(\mathcal{H})$ the following conditions are equivalent:

(a) T is A-power bounded,
(b) $T_{A^{1 / 2}}$ is power bounded on \mathcal{H},

A-power boundedness

$T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded if $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|_{A}<\infty$.

Lemma

For $T \in \mathcal{B}_{A}(\mathcal{H})$ the following conditions are equivalent:
(a) T is A-power bounded,
(b) $T_{A^{1 / 2}}$ is power bounded on \mathcal{H},

Theorem

Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be an A-power bounded operator. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T_{A^{1 / 2}}^{j} h-Q h\right\|_{A}=0, \quad h \in \mathcal{H} \tag{1}
\end{equation*}
$$

where $Q \in \mathcal{B}(\mathcal{H})$ is the ergodic projection of $T_{A^{1 / 2}}$. Moreover, $Q \in \mathcal{B}_{A}(\mathcal{H})$ if and only if there exists $P \in \mathcal{B}(\mathcal{H})$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-P h\right\|_{A}=0, \quad h \in \mathcal{H} \tag{2}
\end{equation*}
$$

In this case, $P \in \mathcal{B}_{A}(\mathcal{H}), P$ is an $A^{1 / 2}$-adjoint of Q, and $P_{A^{1 / 2}}=Q$.

In addition, if $T, P \in \mathcal{B}_{A^{2}}(\mathcal{H})$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T_{A}^{j} h-P_{A} h\right\|_{A}=0, \quad h \in \mathcal{H} \tag{3}
\end{equation*}
$$

and $\left(P_{A}\right)_{A^{1 / 2}}=Q^{*}$.

In what follows, we put

$$
\mathcal{N}:=\mathcal{N}\left(A^{1 / 2}-A^{1 / 2} T\right), \quad \mathcal{N}_{*}:=\mathcal{N}\left(A^{1 / 2}-T^{*} A^{1 / 2}\right) .
$$

Theorem

Suppose that $T \in B_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$. Then TFAE:
(i) Q is $A^{1 / 2}$-selfadjoint, i.e., $A^{1 / 2} Q=Q^{*} A^{1 / 2}$,
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-Q h\right\|_{A}=0$,
(iii) $\mathcal{N}=\mathcal{N}_{*}$,
(iv) $A^{1 / 2} \mathcal{N}=A^{1 / 2} \mathcal{N}_{*}$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

In what follows, we put

$$
\mathcal{N}:=\mathcal{N}\left(A^{1 / 2}-A^{1 / 2} T\right), \quad \mathcal{N}_{*}:=\mathcal{N}\left(A^{1 / 2}-T^{*} A^{1 / 2}\right)
$$

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$.
Then TFAE

[^0]In what follows, we put

$$
\mathcal{N}:=\mathcal{N}\left(A^{1 / 2}-A^{1 / 2} T\right), \quad \mathcal{N}_{*}:=\mathcal{N}\left(A^{1 / 2}-T^{*} A^{1 / 2}\right)
$$

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$. Then TFAE:
(i) Q is $A^{1 / 2}$-selfadjoint, i.e., $A^{1 / 2} Q=Q^{*} A^{1 / 2}$,
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-Q h\right\|_{A}=0$,
(iii) $\mathcal{N}=\mathcal{N}_{*}$,
(iv) $A^{1 / 2} \mathcal{N}=A^{1 / 2} \mathcal{N}_{*}$.
\square
Definition
Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

In what follows, we put

$$
\mathcal{N}:=\mathcal{N}\left(A^{1 / 2}-A^{1 / 2} T\right), \quad \mathcal{N}_{*}:=\mathcal{N}\left(A^{1 / 2}-T^{*} A^{1 / 2}\right)
$$

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$. Then TFAE:
(i) Q is $A^{1 / 2}$-selfadjoint, i.e., $A^{1 / 2} Q=Q^{*} A^{1 / 2}$,
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-Q h\right\|_{A}=0$,
(iii) $\mathcal{N}=\mathcal{N}_{*}$,
(iv) $A^{1 / 2} \mathcal{N}=A^{1 / 2} \mathcal{N}_{*}$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:

(i) T is orthogonally mean ergodic, (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow(i i)$? If the hypothesis that $T_{A^{1 / 2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Does always We do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:
(i) T is orthogonally mean ergodic,

(ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow(i i)$?
 If the hypothesis that $T_{A^{1} / 2}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Does always (ii) We do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:
(i) T is orthogonally mean ergodic,
(ii) T is Cesáro ergodic and A-ergodic.

> Does always $(i) \Rightarrow(i i)$?
> If the hypothesis that $T_{A^{1 / 2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Wees do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:
(i) T is orthogonally mean ergodic,
(ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow(i i)$?

If the hypothesis that $T_{A^{1 / 2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Does always (ii) We do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:
(i) T is orthogonally mean ergodic,
(ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow$ (ii)?

If the hypothesis that $T_{A^{1 / 2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Does always $(i i) \Rightarrow(i)$?
We do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is an A-power bounded operator for some positive, injective operator A, such that $T_{A^{1 / 2}}$ is orthogonally mean ergodic. Then TFAE:
(i) T is orthogonally mean ergodic,
(ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow$ (ii)?

If the hypothesis that $T_{A^{1 / 2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

Does always $(i i) \Rightarrow(i)$?
We do not know.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$. Then TFAE:
(i) Q is $A^{1 / 2}$-selfadjoint, i.e., $A^{1 / 2} Q=Q^{*} A^{1 / 2}$,
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-Q h\right\|_{A}=0$,
(iii) $\mathcal{N}=\mathcal{N}_{*}$,
(iv) $A^{1 / 2} \mathcal{N}=A^{1 / 2} \mathcal{N}_{*}$.

What happens in a special case?
 When $A=I$, the previous theorem says that if an operator is A-ergodic, it is just orthogonally mean ergodic.

Theorem

Suppose that $T \in \mathcal{B}_{A}(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1 / 2}}$ belongs to $\mathcal{B}_{A}(\mathcal{H})$. Then TFAE:
(i) Q is $A^{1 / 2}$-selfadjoint, i.e., $A^{1 / 2} Q=Q^{*} A^{1 / 2}$,
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} T^{j} h-Q h\right\|_{A}=0$,
(iii) $\mathcal{N}=\mathcal{N}_{*}$,
(iv) $A^{1 / 2} \mathcal{N}=A^{1 / 2} \mathcal{N}_{*}$.

What happens in a special case?

When $A=I$, the previous theorem says that if an operator is A-ergodic, it is just orthogonally mean ergodic.

Example

\mathcal{H} - a separable Hilbert, $\left\{e_{n}\right\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H}. Let us consider the

unilateral weighted shift $T \in \mathcal{B}(\mathcal{H})$ given by

Some properties:
 - T is A-ergodic for some A, - T is not even Cesáro bounded.

Example

\mathcal{H} - a separable Hilbert,
$\left\{e_{n}\right\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H}. Let us consider the unilateral weighted shift $T \in \mathcal{B}(\mathcal{H})$ given by

$$
T e_{n}:=\frac{n+2}{n+1} e_{n+1}, \quad n \in \mathbb{N} .
$$

Some properties:

- T is A-ergodic for some A,
- T is not even Cesáro bounded.

Example

\mathcal{H} - a separable Hilbert,
$\left\{e_{n}\right\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H}. Let us consider the unilateral weighted shift $T \in \mathcal{B}(\mathcal{H})$ given by

$$
T e_{n}:=\frac{n+2}{n+1} e_{n+1}, \quad n \in \mathbb{N} .
$$

Some properties:

- T is A-ergodic for some A,
- T is not even Cesáro bounded.
- M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra and its Applications 428 (2008), 1460-1475.
- M.L. Arias, G. Corach, M.C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75, (2009), 635-653.
- S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the nonnegativity of operator products, Acta Math. Hungar. 109 (2005), 1-14.
- L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188.
- L. Kérchy, Operators with regular norm-sequences, Acta Sci. Math. (Szeged) 63 (1997), 571-605.
- L. Kérchy, Generalized Toeplitz operators, Acta Sci. Math. (Szeged) 68 (2002), 373-400.
- V. Müller, Y. Tomilov, Quasisimilarity of power bounded operators and Blum-Hanson property, J. Funct. Anal. 246, No. 2, (2007), 385-399.
- L. Suciu, Ergodic properties and saturation for A-contractions, Theta Ser. Adv. Math., 6, Theta, Bucarest 2006, 223-240.
- L. Suciu, Maximum A-isometric part of an A-contraction and applications, Israel J. Math. 174 (2009), 419-443.
- L. Suciu, Uniformly ergodic A-contractions on Hilbert spaces, Studia Math. 194 (2009), 1-22.
- L. Suciu, N. Suciu, Ergodic conditions and spectral properties for A-contractions, Opuscula Math. 2 (2008), 195-216.

[^0]: Definition
 Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

