Ergodic properties of operators in some semi-Hilbertian spaces

authors: W. Majdak, A.-N. Secelean, L. Suciu speaker: Witold Majdak

Nemecká, 6.09.2011

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\{M_n(T)\}_{n=1}^{\infty}$ of Cesàro averages

$$M_n(T) = \frac{1}{n} \sum_{j=0}^{n-1} T^j$$

of T is convergent in the strong operator topology, i.e.,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^jh=Ph,\quad h\in\mathcal{H},$$

where *P* is the oblique projection such that

$$\mathcal{N}(P) = \overline{\mathcal{R}(I-T)}$$
 and $\mathcal{R}(P) = \mathcal{N}(I-T)$.

くロト (過) (目) (日)

э

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\{M_n(T)\}_{n=1}^{\infty}$ of Cesàro averages

$$M_n(T) = \frac{1}{n} \sum_{j=0}^{n-1} T^j$$

of T is convergent in the strong operator topology, i.e.,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{j}h=Ph,\quad h\in\mathcal{H},$$

where *P* is the oblique projection such that

$$\mathcal{N}(P) = \overline{\mathcal{R}(I-T)}$$
 and $\mathcal{R}(P) = \mathcal{N}(I-T)$.

ヘロト ヘアト ヘビト ヘビト

э

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\{M_n(T)\}_{n=1}^{\infty}$ of Cesàro averages

$$M_n(T) = \frac{1}{n} \sum_{j=0}^{n-1} T^j$$

of T is convergent in the strong operator topology, i.e.,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{j}h=Ph,\quad h\in\mathcal{H},$$

where *P* is the oblique projection such that

$$\mathcal{N}(P) = \overline{\mathcal{R}(I-T)}$$
 and $\mathcal{R}(P) = \mathcal{N}(I-T)$.

ヘロト ヘアト ヘビト ヘビト

э

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if the sequence $\{M_n(T)\}_{n=1}^{\infty}$ of Cesàro averages

$$M_n(T) = \frac{1}{n} \sum_{j=0}^{n-1} T^j$$

of T is convergent in the strong operator topology, i.e.,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{j}h=Ph,\quad h\in\mathcal{H},$$

where P is the oblique projection such that

$$\mathcal{N}(\mathbf{P}) = \overline{\mathcal{R}(\mathbf{I} - T)}$$
 and $\mathcal{R}(\mathbf{P}) = \mathcal{N}(\mathbf{I} - T)$.

ヘロト ヘアト ヘビト ヘビト

э

If T and T^* are Cesàro ergodic, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{*j}h=P^*h,\quad h\in\mathcal{H}.$$

Orthogonally mean ergodic operator

If P is an orthogonal projection, then T is called an orthogonally mean ergodic operator.

Theorem

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if and only if it is similar to an orthogonally mean ergodic operator on \mathcal{H} .

ヘロト ヘワト ヘビト ヘビト

If T and T^* are Cesàro ergodic, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{*j}h=P^*h,\quad h\in\mathcal{H}.$$

Orthogonally mean ergodic operator

If *P* is an orthogonal projection, then *T* is called an orthogonally mean ergodic operator.

Theorem

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if and only if it is similar to an orthogonally mean ergodic operator on \mathcal{H} .

ヘロト ヘアト ヘビト ヘビト

If T and T^* are Cesàro ergodic, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}T^{*j}h=P^*h,\quad h\in\mathcal{H}.$$

Orthogonally mean ergodic operator

If *P* is an orthogonal projection, then *T* is called an orthogonally mean ergodic operator.

Theorem

An operator $T \in \mathcal{B}(\mathcal{H})$ is Cesàro ergodic if and only if it is similar to an orthogonally mean ergodic operator on \mathcal{H} .

くロト (過) (目) (日)

Let $C_{1,\cdot}(\mathcal{H})$ be the class of all power bounded operators $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ such that

$$\inf_{n\in\mathbb{N}}\|T^nh\|>0,\quad h\in\mathcal{H}\setminus\{0\}.$$

It turns out that if $T \in C_{1,\cdot}(\mathcal{H})$, then T and T^* are orthogonally mean ergodic operators

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

(Tools from papers of L. Kérchy).

Classical results

 $\|T\| \le 1 \implies T$ is orthogonally mean ergodic, $\sup_{n \in \mathbb{N}} \|T^n\| < \infty \implies T$ is Cesàro ergodic.

Let $C_{1,\cdot}(\mathcal{H})$ be the class of all power bounded operators $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ such that

$$\inf_{n\in\mathbb{N}}\|T^nh\|>0,\quad h\in\mathcal{H}\setminus\{0\}.$$

It turns out that if $T \in C_{1,\cdot}(\mathcal{H})$, then T and T^* are orthogonally mean ergodic operators

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

(Tools from papers of L. Kérchy).

Classical results

 $\|T\| \le 1 \implies T$ is orthogonally mean ergodic, $\sup_{n \in \mathbb{N}} \|T^n\| < \infty \implies T$ is Cesàro ergodic.

Let $C_{1,\cdot}(\mathcal{H})$ be the class of all power bounded operators $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ such that

$$\inf_{n\in\mathbb{N}}\|T^nh\|>0,\quad h\in\mathcal{H}\setminus\{0\}.$$

It turns out that if $T \in C_{1,\cdot}(\mathcal{H})$, then T and T^* are orthogonally mean ergodic operators

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

(Tools from papers of L. Kérchy).

Classical results

 $\|T\| \le 1 \implies T$ is orthogonally mean ergodic, $\sup_{n \in \mathbb{N}} \|T^n\| < \infty \implies T$ is Cesàro ergodic.

Let $C_{1,\cdot}(\mathcal{H})$ be the class of all power bounded operators $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ such that

$$\inf_{n\in\mathbb{N}}\|T^nh\|>0,\quad h\in\mathcal{H}\setminus\{0\}.$$

It turns out that if $T \in C_{1,\cdot}(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(Tools from papers of L. Kérchy).

Classical results

 $\|T\| \le 1 \implies T$ is orthogonally mean ergodic, $\sup_{n \in \mathbb{N}} \|T^n\| < \infty \implies T$ is Cesàro ergodic.

Let $C_{1,\cdot}(\mathcal{H})$ be the class of all power bounded operators $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ such that

$$\inf_{n\in\mathbb{N}}\|T^nh\|>0,\quad h\in\mathcal{H}\setminus\{0\}.$$

It turns out that if $T \in C_{1,\cdot}(\mathcal{H})$, then T and T^{*} are orthogonally mean ergodic operators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(Tools from papers of L. Kérchy).

Classical results

$$\begin{split} \|T\| &\leq 1 \implies T \text{ is orthogonally mean ergodic,} \\ \sup_{n \in \mathbb{N}} \|T^n\| &< \infty \implies T \text{ is Cesàro ergodic.} \end{split}$$

 $\langle Ah, h \rangle \geq 0, \quad h \in \mathcal{H}.$

Such an A induces a positive semidefinite sesquilinear form $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by

 $\langle h, f \rangle_A = \langle Ah, f \rangle, \quad h, f \in \mathcal{H}.$

Denote by $\|\cdot\|_A$ the seminorm induced by $\langle\cdot,\cdot\rangle_A$, i.e.,

$$\|h\|_A = \sqrt{\langle h, h \rangle_A}, \quad h \in \mathcal{H}.$$

We put

 $\mathcal{B}_{A}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \mid \exists c > 0 \ \forall h \in \mathcal{H} : \ \|Th\|_{A} \leq c \|h\|_{A} \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$\langle Ah,h
angle \geq 0, \quad h\in \mathcal{H}.$$

Such an A induces a positive semidefinite sesquilinear form $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by

$$\langle h, f \rangle_{\mathcal{A}} = \langle \mathcal{A}h, f \rangle, \quad h, f \in \mathcal{H}.$$

Denote by $\|\cdot\|_A$ the seminorm induced by $\langle\cdot,\cdot\rangle_A$, i.e.,

$$\|h\|_{A} = \sqrt{\langle h, h \rangle_{A}}, \quad h \in \mathcal{H}.$$

We put

 $\mathcal{B}_{A}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \mid \exists c > 0 \ \forall h \in \mathcal{H} : \ \|Th\|_{A} \leq c \|h\|_{A} \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$\langle Ah,h
angle \geq 0, \quad h\in \mathcal{H}.$$

Such an A induces a positive semidefinite sesquilinear form $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by

$$\langle h, f \rangle_{\mathcal{A}} = \langle \mathcal{A}h, f \rangle, \quad h, f \in \mathcal{H}.$$

Denote by $\|\cdot\|_A$ the seminorm induced by $\langle\cdot,\cdot\rangle_A$, i.e.,

$$\|h\|_{A} = \sqrt{\langle h, h \rangle_{A}}, \quad h \in \mathcal{H}.$$

We put

 $\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$\langle Ah,h
angle \geq 0, \quad h\in \mathcal{H}.$$

Such an A induces a positive semidefinite sesquilinear form $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by

$$\langle h, f \rangle_{\mathcal{A}} = \langle \mathcal{A}h, f \rangle, \quad h, f \in \mathcal{H}.$$

Denote by $\|\cdot\|_A$ the seminorm induced by $\langle\cdot,\cdot\rangle_A$, i.e.,

$$\|h\|_{A} = \sqrt{\langle h, h \rangle_{A}}, \quad h \in \mathcal{H}.$$

We put

 $\mathcal{B}_{A}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| \mathit{Th} \|_{A} \leq c \| h \|_{A} \}.$

ヘロト 人間 とくほとく ほとう

3

$$\langle Ah,h
angle \geq 0, \quad h\in \mathcal{H}.$$

Such an A induces a positive semidefinite sesquilinear form $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by

$$\langle h, f \rangle_{\mathcal{A}} = \langle \mathcal{A}h, f \rangle, \quad h, f \in \mathcal{H}.$$

Denote by $\|\cdot\|_A$ the seminorm induced by $\langle\cdot,\cdot\rangle_A$, i.e.,

$$\|h\|_{A} = \sqrt{\langle h, h \rangle_{A}}, \quad h \in \mathcal{H}.$$

We put

 $\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$

ヘロト 人間 とくほとくほとう

3

$\mathcal{B}_{A}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| \mathit{Th} \|_{A} \leq c \| h \|_{A} \}.$

We equip $\mathcal{B}_{A}(\mathcal{H})$ with the seminorm $\|\cdot\|_{A}$.

$$||T||_{\mathcal{A}} = \sup_{h \in \overline{\mathcal{R}(A)}, h \neq 0} \frac{||Th||_{\mathcal{A}}}{||h||_{\mathcal{A}}} = \sup_{||h||_{\mathcal{A}} \le 1} ||Th||_{\mathcal{A}}.$$

A-adjoint

For $T \in \mathcal{B}_A(\mathcal{H})$, an operator $S \in \mathcal{B}_A(\mathcal{H})$ is called an *A*-adjoint of *T* if

$$\langle Th, f \rangle_A = \langle h, Sf \rangle_A, \quad h, f \in \mathcal{H},$$

i.e., $AS = T^*A$. We say that T is A-selfadjoint if $AT = T^*A$.

$$\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$$

$$\|T\|_{\mathcal{A}} = \sup_{h \in \overline{\mathcal{R}(\mathcal{A})}, h \neq 0} \frac{\|Th\|_{\mathcal{A}}}{\|h\|_{\mathcal{A}}} = \sup_{\|h\|_{\mathcal{A}} \leq 1} \|Th\|_{\mathcal{A}}.$$

A-adjoint

For $T \in \mathcal{B}_A(\mathcal{H})$, an operator $S \in \mathcal{B}_A(\mathcal{H})$ is called an *A*-adjoint of *T* if

$$\langle Th, f \rangle_A = \langle h, Sf \rangle_A, \quad h, f \in \mathcal{H},$$

i.e., $AS = T^*A$. We say that T is A-selfadjoint if $AT = T^*A$.

$$\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$$

$$\|T\|_{\mathcal{A}} = \sup_{h \in \overline{\mathcal{R}(\mathcal{A})}, h \neq 0} \frac{\|Th\|_{\mathcal{A}}}{\|h\|_{\mathcal{A}}} = \sup_{\|h\|_{\mathcal{A}} \leq 1} \|Th\|_{\mathcal{A}}.$$

A-adjoint

For $T \in \mathcal{B}_A(\mathcal{H})$, an operator $S \in \mathcal{B}_A(\mathcal{H})$ is called an *A*-adjoint of *T* if

 $Th, f \rangle_A = \langle h, Sf \rangle_A, \quad h, f \in \mathcal{H},$

i.e., $AS = T^*A$. We say that T is A-selfadjoint if $AT = T^*A$.

$$\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$$

$$\|T\|_{\mathcal{A}} = \sup_{h\in\overline{\mathcal{R}(\mathcal{A})}, h\neq 0} \frac{\|Th\|_{\mathcal{A}}}{\|h\|_{\mathcal{A}}} = \sup_{\|h\|_{\mathcal{A}}\leq 1} \|Th\|_{\mathcal{A}}.$$

A-adjoint

For $T \in \mathcal{B}_A(\mathcal{H})$, an operator $S \in \mathcal{B}_A(\mathcal{H})$ is called an *A*-adjoint of *T* if

$$\langle Th, f \rangle_{\mathcal{A}} = \langle h, Sf \rangle_{\mathcal{A}}, \quad h, f \in \mathcal{H},$$

i.e., $AS = T^*A$. We say that T is A-selfadjoint if $AT = T^*A$.

$$\mathcal{B}_{\mathcal{A}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) \, | \, \exists c > 0 \, \forall h \in \mathcal{H} : \, \| Th \|_{\mathcal{A}} \leq c \| h \|_{\mathcal{A}} \}.$$

$$\|T\|_{\mathcal{A}} = \sup_{h \in \overline{\mathcal{R}(\mathcal{A})}, h \neq 0} \frac{\|Th\|_{\mathcal{A}}}{\|h\|_{\mathcal{A}}} = \sup_{\|h\|_{\mathcal{A}} \leq 1} \|Th\|_{\mathcal{A}}.$$

A-adjoint

For $T \in \mathcal{B}_A(\mathcal{H})$, an operator $S \in \mathcal{B}_A(\mathcal{H})$ is called an *A*-adjoint of *T* if

$$\langle Th, f \rangle_{\mathcal{A}} = \langle h, Sf \rangle_{\mathcal{A}}, \quad h, f \in \mathcal{H},$$

i.e., $AS = T^*A$. We say that T is A-selfadjoint if $AT = T^*A$.

Existence and uniqueness

If $T \in \mathcal{B}_A(\mathcal{H})$, then $S \in \mathcal{B}_A(\mathcal{H})$ such that

$$AS = T^*A$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

need not exist.

Note that $\mathcal{B}_{A^2}(\mathcal{H}) \subset \mathcal{B}_A(\mathcal{H})$

(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

If $T \in \mathcal{B}_{A^2}(\mathcal{H})$, then *S* exists, but it may not be uniquely determined.

Existence and uniqueness

If $T \in \mathcal{B}_A(\mathcal{H})$, then $S \in \mathcal{B}_A(\mathcal{H})$ such that

$$AS = T^*A$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

need not exist.

Note that $\mathcal{B}_{A^2}(\mathcal{H}) \subset \mathcal{B}_A(\mathcal{H})$

(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

If $T \in \mathcal{B}_{A^2}(\mathcal{H})$, then *S* exists, but it may not be uniquely determined.

Existence and uniqueness

If $T \in \mathcal{B}_A(\mathcal{H})$, then $S \in \mathcal{B}_A(\mathcal{H})$ such that

$$AS = T^*A$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

need not exist.

Note that $\mathcal{B}_{A^2}(\mathcal{H}) \subset \mathcal{B}_A(\mathcal{H})$

(S. Hassi, Z. Sebestyén, H.S.V. de Snoo, 2005).

If $T \in \mathcal{B}_{A^2}(\mathcal{H})$, then *S* exists, but it may not be uniquely determined.

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(\mathbf{R}) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.
- If (i) holds, then there exists a unique operator $S\in \mathcal{B}(\mathcal{H})$ such that

 $LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \ \text{and} \ \mathcal{N}(S) = \mathcal{N}(R).$

If T has an A-adjoint S, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

・ロト ・ 理 ト ・ ヨ ト ・

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.

If (i) holds, then there exists a unique operator $S\in \mathcal{B}(\mathcal{H})$ such that

 $LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \text{ and } \mathcal{N}(S) = \mathcal{N}(R)$

If T has an A-adjoint S, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.
- If (i) holds, then there exists a unique operator $\mathcal{S}\in\mathcal{B}(\mathcal{H})$ such that

 $LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \text{ and } \mathcal{N}(S) = \mathcal{N}(R).$

If T has an A-adjoint S, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへの

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.

If (i) holds, then there exists a unique operator $\mathcal{S}\in\mathcal{B}(\mathcal{H})$ such that

$$LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \ \text{and} \ \mathcal{N}(S) = \mathcal{N}(R)$$

If T has an A-adjoint S, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.

If (i) holds, then there exists a unique operator $S\in \mathcal{B}(\mathcal{H})$ such that

$$LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \ \text{and} \ \mathcal{N}(S) = \mathcal{N}(R)$$

If T has an A-adjoint S, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.

If (i) holds, then there exists a unique operator $\mathcal{S}\in\mathcal{B}(\mathcal{H})$ such that

$$LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \ \text{and} \ \mathcal{N}(S) = \mathcal{N}(R)$$

If *T* has an *A*-adjoint *S*, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

$$AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$$

ヘロン 人間 とくほ とくほ とう

э.

For $L, R \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent:

- (i) $\mathcal{R}(R) \subset \mathcal{R}(L)$,
- (ii) there exists a positive number λ such that $RR^* \leq \lambda LL^*$,
- (iii) there exists $C \in \mathcal{B}(\mathcal{H})$ such that LC = R.

If (i) holds, then there exists a unique operator $\mathcal{S}\in\mathcal{B}(\mathcal{H})$ such that

$$LS = R, \ \mathcal{R}(S) \subset \overline{\mathcal{R}(L^*)} \ \text{and} \ \mathcal{N}(S) = \mathcal{N}(R)$$

If *T* has an *A*-adjoint *S*, then $AS = T^*A$. By the Douglas theorem, we can find a unique T_A such that

 $AT_A = T^*A, \ \mathcal{R}(T_A) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T_A) = \mathcal{N}(T^*A).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

A-power boundedness

 $T \in \mathcal{B}_{A}(\mathcal{H})$ is *A*-power bounded if $\sup_{n \in \mathbb{N}} \|T^{n}\|_{A} < \infty$.

Lemma

For $T \in \mathcal{B}_A(\mathcal{H})$ the following conditions are equivalent:

(a) T is A-power bounded,

b) $T_{A^{1/2}}$ is power bounded on \mathcal{H} ,

authors: W. Majdak, A.-N. Secelean, L. Suciu speaker: Witold Ma Ergodic properties of operators...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

A-power boundedness

 $T \in \mathcal{B}_{A}(\mathcal{H})$ is *A*-power bounded if $\sup_{n \in \mathbb{N}} \|T^{n}\|_{A} < \infty$.

Lemma

For $T \in \mathcal{B}_A(\mathcal{H})$ the following conditions are equivalent:

(a) T is A-power bounded,

(b) $T_{A^{1/2}}$ is power bounded on \mathcal{H} ,

authors: W. Majdak, A.-N. Secelean, L. Suciu speaker: Witold Ma Ergodic properties of operators...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

Let $T \in \mathcal{B}_A(\mathcal{H})$ be an A-power bounded operator. Then

$$\lim_{n\to\infty} \left\|\frac{1}{n}\sum_{j=0}^{n-1}T^j_{A^{1/2}}h-Qh\right\|_{A}=0, \quad h\in\mathcal{H},$$
(1)

where $Q \in \mathcal{B}(\mathcal{H})$ is the ergodic projection of $T_{A^{1/2}}$. Moreover, $Q \in \mathcal{B}_A(\mathcal{H})$ if and only if there exists $P \in \mathcal{B}(\mathcal{H})$ such that

$$\lim_{n\to\infty} \left\|\frac{1}{n}\sum_{j=0}^{n-1}T^{j}h-Ph\right\|_{\mathcal{A}}=0, \quad h\in\mathcal{H}.$$
 (2)

イロト イポト イヨト イヨト 一臣

In this case, $P \in \mathcal{B}_A(\mathcal{H})$, P is an $A^{1/2}$ -adjoint of Q, and $P_{A^{1/2}} = Q$.

In addition, if $T, P \in \mathcal{B}_{A^2}(\mathcal{H})$, then

$$\lim_{n\to\infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} T_A^j h - P_A h \right\|_A = 0, \quad h \in \mathcal{H},$$
(3)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

and
$$(P_A)_{A^{1/2}} = Q^*$$

$$\mathcal{N} := \mathcal{N}(\mathbf{A}^{1/2} - \mathbf{A}^{1/2}T), \quad \mathcal{N}_* := \mathcal{N}(\mathbf{A}^{1/2} - T^*\mathbf{A}^{1/2}).$$

Theorem

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is *A*-power bounded operator and the ergodic projection *Q* of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i) *Q* is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$, (ii) $\lim_{n\to\infty} \|\frac{1}{n}\sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$, (iii) $\mathcal{N} = \mathcal{N}_*$, (iv) $A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is *A*-ergodic.

$$\mathcal{N} := \mathcal{N}(\mathbf{A}^{1/2} - \mathbf{A}^{1/2}T), \quad \mathcal{N}_* := \mathcal{N}(\mathbf{A}^{1/2} - T^*\mathbf{A}^{1/2}).$$

Theorem

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i) Q is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$, (ii) $\lim_{n\to\infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$, (iii) $\mathcal{N} = \mathcal{N}_*$, (iv) $A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

$$\mathcal{N} := \mathcal{N}(A^{1/2} - A^{1/2}T), \quad \mathcal{N}_* := \mathcal{N}(A^{1/2} - T^*A^{1/2}).$$

Theorem

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i)
$$Q$$
 is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$
(ii) $\lim_{n\to\infty} \|\frac{1}{n}\sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$,
(iii) $\mathcal{N} = \mathcal{N}_*$,
(iv) $A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

$$\mathcal{N} := \mathcal{N}(A^{1/2} - A^{1/2}T), \quad \mathcal{N}_* := \mathcal{N}(A^{1/2} - T^*A^{1/2}).$$

,

Theorem

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i)
$$Q$$
 is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$
(ii) $\lim_{n\to\infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$,
(iii) $\mathcal{N} = \mathcal{N}_*$,
(iv) $A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$.

Definition

Under assumptions of the above theorem, if one of the above condition holds, then we say that T is A-ergodic.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

- (i) T is orthogonally mean ergodic,
- (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

(i) T is orthogonally mean ergodic,

(ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

イロン 不得 とくほ とくほ とうほ

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

- (i) T is orthogonally mean ergodic,
- (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

- (i) T is orthogonally mean ergodic,
- (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

- (i) T is orthogonally mean ergodic,
- (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is an *A*-power bounded operator for some positive, injective operator *A*, such that $T_{A^{1/2}}$ is orthogonally mean ergodic. Then TFAE:

- (i) T is orthogonally mean ergodic,
- (ii) T is Cesáro ergodic and A-ergodic.

Does always $(i) \Rightarrow (ii)$?

If the hypothesis that $T_{A^{1/2}}$ is orthogonally mean ergodic is dropped (i) does not imply (ii).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Does always $(ii) \Rightarrow (i)$?

We do not know.

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i) *Q* is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$,

(ii)
$$\lim_{n\to\infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$$
,

(iii)
$$\mathcal{N} = \mathcal{N}_*$$
,

(iv)
$$A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$$
.

What happens in a special case?

When A = I, the previous theorem says that if an operator is *A*-ergodic, it is just orthogonally mean ergodic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Suppose that $T \in \mathcal{B}_A(\mathcal{H})$ is A-power bounded operator and the ergodic projection Q of $T_{A^{1/2}}$ belongs to $\mathcal{B}_A(\mathcal{H})$. Then TFAE:

(i) Q is $A^{1/2}$ -selfadjoint, i.e., $A^{1/2}Q = Q^*A^{1/2}$,

(ii)
$$\lim_{n\to\infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^j h - Qh\|_A = 0$$
,

(iii)
$$\mathcal{N} = \mathcal{N}_*$$
,

(iv)
$$A^{1/2}\mathcal{N} = A^{1/2}\mathcal{N}_*$$
.

What happens in a special case?

When A = I, the previous theorem says that if an operator is *A*-ergodic, it is just orthogonally mean ergodic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example

 \mathcal{H} - a separable Hilbert, $\{e_n\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H} . Let us consider the unilateral weighted shift $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ given by

$$Te_n := rac{n+2}{n+1}e_{n+1}, \quad n \in \mathbb{N}.$$

ヘロン 人間 とくほ とくほ とう

3

Some properties:

- T is A-ergodic for some A,
- *T* is not even Cesáro bounded.

Example

 \mathcal{H} - a separable Hilbert,

 $\{e_n\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H} . Let us consider the unilateral weighted shift $T \in \mathcal{B}(\mathcal{H})$ given by

$$Te_n := rac{n+2}{n+1}e_{n+1}, \quad n \in \mathbb{N}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Some properties:

- T is A-ergodic for some A,
- *T* is not even Cesáro bounded.

Example

 \mathcal{H} - a separable Hilbert,

 $\{e_n\}_{n=0}^{\infty}$ - the orthonormal basis of \mathcal{H} . Let us consider the unilateral weighted shift $T \in \mathcal{B}(\mathcal{H})$ given by

$$Te_n := rac{n+2}{n+1}e_{n+1}, \quad n \in \mathbb{N}.$$

ヘロン 人間 とくほ とくほ とう

3

Some properties:

- T is A-ergodic for some A,
- T is not even Cesáro bounded.

- M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, *Linear Algebra and its Applications* 428 (2008), 1460-1475.
- M.L. Arias, G. Corach, M.C. Gonzalez, Lifting properties in operator ranges, *Acta Sci. Math. (Szeged)* 75, (2009), 635-653.
- S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the nonnegativity of operator products, *Acta Math. Hungar.* 109 (2005), 1-14.
- L. Kérchy, Isometric asymptotes of power bounded operators, *Indiana Univ. Math. J.* **38** (1989), 173-188.
- L. Kérchy, Operators with regular norm-sequences, *Acta Sci. Math. (Szeged)* **63** (1997), 571-605.
- L. Kérchy, Generalized Toeplitz operators, *Acta Sci. Math.* (*Szeged*) **68** (2002), 373-400.
- V. Müller, Y. Tomilov, Quasisimilarity of power bounded operators and Blum-Hanson property, *J. Funct. Anal.* 246, No. 2, (2007), 385-399.

- L. Suciu, Ergodic properties and saturation for *A*-contractions, *Theta Ser. Adv. Math.*, 6, Theta, Bucarest 2006, 223-240.
- L. Suciu, Maximum *A*-isometric part of an *A*-contraction and applications, *Israel J. Math.* **174** (2009), 419-443.
- L. Suciu, Uniformly ergodic *A*-contractions on Hilbert spaces, *Studia Math.* **194** (2009), 1-22.
- L. Suciu, N. Suciu, Ergodic conditions and spectral properties for A-contractions, Opuscula Math. 2 (2008), 195-216.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・