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Notation.

I H,H′ – complex separable Hilbert spaces (Banach spaces)

I L(H,H′), L(H,H) = L(H) – bounded linear operators

I reflexive closure of S ⊆ L(H,H′):
Ref S =

⋂
x∈H{T ∈ L(H,H′); Tx ∈ [Sx ]}

[Sx ] is closed linear span of Sx = {Sx ; S ∈ S}.
For T ∈ L(H,H′):

I d (T ,S) = inf
S∈S
‖T − S‖ = inf

S∈S
sup

x∈H,‖x‖≤1
‖Tx − Sx‖

I α (T ,S) = sup
x∈H,‖x‖≤1

inf
S∈S
‖Tx − Sx‖.

Definition
A (WOT closed subspace) S ⊆ L(H,H′) is said to be reflexive if
Ref S = S and it is called hyperreflexive if ∃ c ≥ 1 such that

d (T ,S) ≤ c α (T ,S) ∀T ∈ L(H,H′) . (1)

Minimal such c , κ(S) is the hyperreflexivity constant of S.
T ∈ L(H) is (hyper)reflexive if so is Alg T .
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T ∈ Ref S ⇐⇒ α (T ,S) = 0,

so hyperrefl. =⇒ reflexivity.

Reflexive
algebras: Sarason (1966), subspaces: Shul’man (1973)
hyperreflexive
algebras: Arveson (1975), subspaces: Kraus-Larson (1985)

the 1st reflexive but not hyperrefl. space: Kraus-Larson (1985).
It is well-known (e.g. J.B. Conway, 2000, A Course in OT,) that

(i) α (T ,S) ≤ d (T ,S),

(ii) Ref S is a WOT-closed subspace of L(H,H′),

(iii) α (T ,S) = sup{‖QTP‖ : P,Q projections, QSP = {0}},
(iv) α (T ,S) = sup{|(Tx , y)| : ‖x‖=‖y‖=1, (Sx , y) = 0,S ∈ S},
(v) reflexivity is preserved by quasi-similarity of subspaces,

hyperreflexivity is not preserved,

(vi) both are preserved by similarity.

In the following proposition (vi) is stated more precisely:
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Proposition (Bessonov-Bračič-Zajac 2001)

Let X and Y be complex Banach spaces and let S ⊆ L(X) be a
hyperreflexive subspace of operators. If A ∈ L(X,Y) and
B ∈ L(Y,X) are invertible operators,
then ASB ⊆ L(Y) is a hyperreflexive subspace and

1
‖A‖‖B‖‖A−1‖‖B−1‖κ(S) ≤ κ(ASB) ≤ ‖A‖‖B‖‖A−1‖‖B−1‖κ(S).

Corollary

Let H be a complex Hilbert space and S ⊆ L(H) be a
hyperreflexive linear space. If U and V are unitary operators on H,
then the space USV is hyperreflexive and

κ(USV ) = κ(S) . (2)
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reflexivity 6=⇒ hyperreflexivity.
The first example has been obtained by Krause and Larson (1985).
All known counterexamples are direct sum of hyperreflexive
subspaces. Their constructions are based on the following facts

1. Orthogonal sum of reflexive spaces is reflexive,

2. S =
⊕∞

n=1 Sn =⇒ κ(Sn) ≤ κ(S)

The converse (of 2.) was proved by K. Klís and M. Ptak (2006):

Theorem
S =

⊕∞
n=1 Sn is hyperreflexive if and only if

∀Sn are hyperrefl. and ∃K > 0 s.t. κ(Sn) ≤ K ∀ n ∈ N.
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Kraus-Larson Example (1985):
Let H2 be a two-dimensional Hilbert space with orthonormal basis
{e1, e2}. Fix 0 < ε < 1/3 and put u1 = e1, u2 = e1 + εe2.

Lemma
Let

Sε =
{

Sλ,µ =
(

0 λ
µ −(λ+µ)/ε

)
: λ, µ ∈ C

}
.

Then Sε is a hyperreflexive subspace of L(H2) with

κ(S) ≥ 1

3ε
. (3)

(3) has been proved directly from the definition. Now, we can give
more precise estimate.
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Theorem (S. Tosaka 1999)

Let H = C2 and let L 6= M be one-dimensional subspaces of H,
i.e. L + M = H. Denote

Alg{L,M} = {T ∈ B(H); TL ⊆ L and TM ⊆M}.
ϕ = ](L,M).

Then Alg{L,M} is hyperreflexive and

κ(Alg{L,M}) = 1
sinϕ .

Lemma

κ(Sε) =

√
1 + ε2

ε
>

1

ε
. (4)

Sε from the Kraus-Larson example is not Alg{L,M} (from
Tosaka). However it is unitary equivalent to such an algebra:
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Proof of the lemma.
Observe that U =

(
0 −1
1 0

)
is unitary and for ∀λ, µ ∈ C

USλ,µ = U
(

0 λ
µ −(λ+µ)/ε

)
=
(
−µ (λ+µ)/ε
0 λ

)
.

Putting e1 = ( 1
0 ) , e2 = ( 0

1 ) .

we obtain USε = Alg{[u1], [u2]}, u1 = e1, u2 = e1 + εe2, and

κ(Sε) =
1

sinϕ
,

where cosϕ = (u1,u2)
‖u1‖‖u2‖ = 1√

1+ε2
.

sinϕ =
√

1− cos2 ϕ = ε√
1+ε2

=⇒ 1
sinϕ =

√
1+ε2

ε > 1
ε ..
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Nonhyperreflexive reflexive intertwiners

Kraus-Larson example can be also used (M.Z. 2008) to show that
there are reflexive intertwiners which are not hyperreflexive.

The intertwiner of T ∈ L(H),T ′ ∈ L(H′) is

I (T ,T ′) = {X ∈ L(H,H′) : XT = T ′X} .

Putting An = ( 0 n
0 1 ) , Bn =

(
0 0
−n 1

)
we obtain X ∈ I (An,Bn) ⇐⇒ ∃λ, µ ∈ C : Xn =

(
0 λ
µ −n(λ+µ)

)
,

i.e. I (An,Bn) = S1/n from the Kraus-Larson example.
Now it is easy to prove

Theorem (M.Z. 2008)

There exist operators T ,T ′ for which I (T ,T ′) is reflexive but not
hyperreflexive.
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Proof.
It is enough to put

Tn = eπ/n
1

n
(nI + An) , T ′n = eπ/n

1

n
(nI + Bn) .

Then

I I (Tn,T
′
n) = I (An,A

′
n),

I ‖An‖ = ‖Bn‖ =
√

1 + n2 =⇒ ‖Tn‖ ≤ 1 +
√
1+n2

n < 3,

I analogously, {‖T ′n‖} ≤ 1 +
√
1+n2

n < 3,

I operators T =
⊕∞

n=1 Tn, T ′ =
⊕∞

n=1 T ′n are bounded

I For n 6= m the minimal polynomials of Tn and T ′m are
relatively prime,

I =⇒ I (Tn,T
′
m) = {0} =⇒ I (T ,T ′) =

⊕∞
n=1 I (Tn,T

′
n)

Thus the Kraus-Larson example is also an example of intertwiner
which is reflexive but not hyperreflexive.



Proof.
It is enough to put

Tn = eπ/n
1

n
(nI + An) , T ′n = eπ/n

1

n
(nI + Bn) .

Then

I I (Tn,T
′
n) = I (An,A

′
n),

I ‖An‖ = ‖Bn‖ =
√

1 + n2 =⇒ ‖Tn‖ ≤ 1 +
√
1+n2

n < 3,

I analogously, {‖T ′n‖} ≤ 1 +
√
1+n2

n < 3,

I operators T =
⊕∞

n=1 Tn, T ′ =
⊕∞

n=1 T ′n are bounded

I For n 6= m the minimal polynomials of Tn and T ′m are
relatively prime,

I =⇒ I (Tn,T
′
m) = {0} =⇒ I (T ,T ′) =

⊕∞
n=1 I (Tn,T

′
n)

Thus the Kraus-Larson example is also an example of intertwiner
which is reflexive but not hyperreflexive.



Proof.
It is enough to put

Tn = eπ/n
1

n
(nI + An) , T ′n = eπ/n

1

n
(nI + Bn) .

Then

I I (Tn,T
′
n) = I (An,A

′
n),

I ‖An‖ = ‖Bn‖ =
√

1 + n2 =⇒ ‖Tn‖ ≤ 1 +
√
1+n2

n < 3,

I analogously, {‖T ′n‖} ≤ 1 +
√
1+n2

n < 3,

I operators T =
⊕∞

n=1 Tn, T ′ =
⊕∞

n=1 T ′n are bounded

I For n 6= m the minimal polynomials of Tn and T ′m are
relatively prime,

I =⇒ I (Tn,T
′
m) = {0} =⇒ I (T ,T ′) =

⊕∞
n=1 I (Tn,T

′
n)

Thus the Kraus-Larson example is also an example of intertwiner
which is reflexive but not hyperreflexive.



Proof.
It is enough to put

Tn = eπ/n
1

n
(nI + An) , T ′n = eπ/n

1

n
(nI + Bn) .

Then

I I (Tn,T
′
n) = I (An,A

′
n),

I ‖An‖ = ‖Bn‖ =
√

1 + n2 =⇒ ‖Tn‖ ≤ 1 +
√
1+n2

n < 3,

I analogously, {‖T ′n‖} ≤ 1 +
√
1+n2

n < 3,

I operators T =
⊕∞

n=1 Tn, T ′ =
⊕∞

n=1 T ′n are bounded

I For n 6= m the minimal polynomials of Tn and T ′m are
relatively prime,

I =⇒ I (Tn,T
′
m) = {0} =⇒ I (T ,T ′) =

⊕∞
n=1 I (Tn,T

′
n)

Thus the Kraus-Larson example is also an example of intertwiner
which is reflexive but not hyperreflexive.



Proof.
It is enough to put

Tn = eπ/n
1

n
(nI + An) , T ′n = eπ/n

1

n
(nI + Bn) .

Then

I I (Tn,T
′
n) = I (An,A

′
n),

I ‖An‖ = ‖Bn‖ =
√

1 + n2 =⇒ ‖Tn‖ ≤ 1 +
√
1+n2

n < 3,

I analogously, {‖T ′n‖} ≤ 1 +
√
1+n2

n < 3,

I operators T =
⊕∞

n=1 Tn, T ′ =
⊕∞

n=1 T ′n are bounded

I For n 6= m the minimal polynomials of Tn and T ′m are
relatively prime,

I =⇒ I (Tn,T
′
m) = {0} =⇒ I (T ,T ′) =

⊕∞
n=1 I (Tn,T

′
n)

Thus the Kraus-Larson example is also an example of intertwiner
which is reflexive but not hyperreflexive.



C0 contractions

The preceding example can be modified to obtain C0 contraction
T with reflexive, but not hyperreflexive commutant. Put

An = ( 0 n
0 1 ) , Dn = (1− 1

n
)I +

1

n2
An , Tn =

e iπ/n

‖Dn‖
Dn

Again, by Tosaka, κ{Tn}′ = κ{An}′ =
√

1 + n2. Thus we obtain:

(i) ‖Tn‖ = 1.

(ii) Dn ( 0
1 ) =

(
1/n

1−(1/n)+(1/n2)

)
=⇒ ‖Dn‖ > 1− (1/n) + (1/n2),

(iii) spectrum σ(Dn) = {1− 1
n , 1−

1
n + 1

n2
), i.e. ‖DN‖ > r(Dn)

σ(Tn) = {λn, µn}, |λn| < |µn| < 1, lim |λn| = lim |µn| = 1.

(iv) If m 6= n then σ(Tn) ∩ σ(Tm) = ∅.
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Theorem
There exists a sequence of matrices Tk ∈ C 2×2 such that

1. ‖Tk‖ = 1 for all k = 1, 2, . . . .

2. Each Tk has two eigenvalues λk 6= µk and therefore its
commutant {Tk}′ is hyperreflexive.

3. For any k 6= m the spectra of Tk and Tm are disjoint, i.e.
{λk , µk} ∩ {λm, µm} = ∅.

4. lim
k→∞

κ({Tk}′) =∞.

5.
∞∑
k=1

[(1− |λk |) + (1− |µk |)] <∞ and, consequently,

6. Blaschke product B(λ) =
∞∏
k=1

λk
|λk |

λk−λ
1−λkλ

µk
|µk |

µk−λ
1−µkλ converges in

the open unit disk.

Consequently, T =
⊕∞

k=1 Tk is a C0 contraction having minimal
function B(λ) and {T}′ is reflexive but not hyperreflexive.
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function B(λ) and {T}′ is reflexive but not hyperreflexive.
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Recall that m(λ) ∈ H∞ is the minimal function of a C0

contraction T if m(T ) = 0 and if f (T ) = 0, then m|f . The
simplest C0 is model operator Sm:

Sm ∈ L(H2 	mH2) , Smu = Pm[λu(λ)] .

For T from the previous screen defect indices

dim (I − T ∗T )H = dim (I − TT ∗)H =∞,

each Sm has defect indices =1. Thus T is not similar to model Sm

Now, a construction of reflexive but not hyperreflexive Sm will be
indicated:
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First, we recall a sufficient condition for hyperreflexivity of the
model operator

Theorem
For λ ∈ C, |λ| < 1 denote the corresponding Blaschke factor

bλ(z) =
|λ|
λ

λ− z

1− λz

and let B be a Blaschke product having only simple zeroes:

B(z) =
∞∏
n=1

bλn(z) and let Bλn(z) =
B(z)

bλn(z)
.

If B satisfies the Carleson condition

inf
n
|Bλn(λn)| > 0 ,

then SB is hyperreflexive.
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The main idea (due to R.V. Bessonov) how to construct a
Blaschke product B having simple zeroes for which SB is not
hyperreflexive was to take

B(z) = C (z)D(z), where
C (z) =

∏∞
n=1 bµn(z), D(z) =

∏∞
n=1 bνn(z) such that

0 < |µn − νn| is sufficiently small, i.e. B is ‘almost’ a square.

Then SB is similar to the direct sum of its restrictions Mn to the
2-dimensional spaces spanned by the eigenvectors corresponding to
the eigenvalues µn and νn

Then the angle that make those eigenvalues → 0 and, consequently

limκ(SB |Mn) =∞ .

So this example is again of the Kraus-Larson type.
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We conclude with a natural open problem:

Question
Does there exist a non-hyperreflexive reflexive space of operators
which is not similar to a direct sum of reflexive spaces?

Thank you for your attention



Thank you for participating in 8th WFA
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