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I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



I Question (M.Znojil): What is the relationship between the
Hilbert space quantum mechanics and quantum structures?

I Quantum structures: quantum logics, effect algebras etc.

I Quantum mechanics - observables are (unbounded) operators
on Hilbert space

I The first example of effect algebra (different from Boolean
algebra) - Foulis and Bennett (1994) - the set of Hilbert space
effects E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}

I partial operation ⊕ on E(H) : A⊕ B is defined and equal to
A + B iff A + B ≤ I .

I E(H) satisfies the conditions of the following definition:



Definition (Foulis and Bennett, 1994)

A partial algebra (E ;⊕, 0, 1) is called an effect algebra if 0,1 are
two distinct elements and ⊕ is a partial operation on E for which

I (E1): x ⊕ y = y⊕ x if x ⊕ y is defined

I (E2): (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) if one side is defined

I (E3): for every x ∈ E there exists a unique y ∈ E such that
x ⊕ y = 1

I (E4): if 1⊕ x is defined then x = 0

I So the first example of effect algebra was modelled by
operators in Hilbert space

I Generalizations of effect algebras (without a top element 1)
have been studied - generalized effect algebras
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Definition
(1) Generalized effect algebra (E ;⊕, 0) is a set E with element
0 ∈ E and partial binary operation ⊕ satisfying for any x , y , z ∈ E
conditions

I (GE1): x ⊕ y = y⊕ x if one side is defined

I (GE2): (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) if one side is defined

I (GE3): if x ⊕ y = x ⊕ z then y = z (cancellation law)

I (GE4): if x ⊕ y = 0 then x = y = 0

I (GE5): x ⊕ 0 = x for all x ∈ E

(2) Define a binary relation ≤ on E by x ≤ y iff for some z ∈ E ,
x ⊕ z = y
(3) Q ⊆ E is a sub-generalized effect algebra iff out of elements
x , y , z ∈ E with x ⊕ y = z at least two are in Q then x , y , z ∈ Q
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I Every sub-generalized effect algebra of E is a generalized
effect algebra in its own right

I Every effect algebra is a generalized effect algebra in the
natural sense

I (Foulis and Bennett, 1994) - the effect algebra
E(H) = {A ∈ B(H) | 0 ≤ A ≤ I} was modelled by (bounded)
operators on Hilbert space. (It is important for mathematical
description of unsharp measurement in quantum mechanics.)

I Later, effect algebras and generalized effect algebras were
modelled by objects of different kind (e.g. fuzzy sets) or
regarded as abstract structures

I The aim of the present work is to show another examples of
generalized effect algebras modelled by (possibly unbounded)
operators on Hilbert space. (So the introductory question
about the relationship between quantum mechanics and
quantum structures is only an inspiration.)
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I H - complex Hilbert space

I A linear operator A on H with domain D(A) is densely defined
if D(A) = H. A is positive if (Ax , x) ≥ 0 for all x ∈ D(A).

Theorem
Let H be a complex Hilbert space and let D ⊆ H be a linear
subspace dense in H. Let

GD(H) = {A : D → H | A is a positive linear operator defined on D}

Then (GD(H);⊕, 0) is a generalized effect algebra where 0 is the
null operator and ⊕ is the usual sum of operators defined on D. In
this case ⊕ is a total operation.

I So all positive operators defined on a fixed dense subspace in
H form a generalized effect algebra with the operation of the
usual operator sum.
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I The most difficult condition to prove was (GE 4): if
A⊕ B = 0 then A = B = 0.

I The operators A ∈ GD(H) may be unbounded. So
(GD(H);⊕, 0) is an example of generalized effect algebra
modelled by (possibly unbounded) operators on Hilbert space
H.

I The next Theorem deals with bounded operators

Theorem
Let H be a complex Hilbert space and D ⊆ H be a dense linear
subspace of H. Then the set of all bounded positive linear
operators on D form a sub-generalized effect algebra of GD(H)
with respect to usual addition of operators, which in this case is a
total operation.

I So bounded operators (with the usual operator addition) form
a generalized effect algebra. (It is also possible to choose
D = H.)
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I Now we show a generalized effect algebra including all (also
unbounded) positive linear operators densely defined on H,
without fixed domain D ⊆ H.

I If A, B are linear operators with domains D(A), D(B),
D(A) ⊆ D(B) then B|D(A) is the restriction of B to D(A).
A + B means the usual addition of operators.
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I Let V(H) denotes the set of all positive linear operators on H
with the domain D(A) = H if A is bounded and with
D(A) = H if A is unbounded.

Theorem
Let H be a complex infinite-dimensional Hilbert space. Let ⊕ be a
partial binary operation on V(H) defined by A⊕ B = A + B with
D(A⊕ B) = H for any bounded A, B ∈ V(H) and
A⊕ B = B ⊕ A = A + B|D(A) with D(A⊕ B) = D(A) if A is
unbounded and B is bounded. Then (V(H);⊕, 0) is a generalized
effect algebra.

Moreover, the set Bp(H) of all bounded positive linear operators
defined on H is a sub-generalized effect algebra of V(H) with
respect to inherited ⊕-operation, which becomes total on Bp(H).
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