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Stationary case

Optimal design problem for a unilaterally supported beam:

I. Hlaváček, I. Bock and J. Lovíšek: Optimal control of a
variational inequality with applications to structural analysis. I.
Optimal design of a beam with a unilateral support. Appl.
Math. Optim. 11 (1984), 111-143.

I. Bock and J. Lovíšek: Optimal control problems for variational
inequalities with controls in coefficients and in unilateral
constraints. Aplikace Matematiky 32 (1987), 301-314.

State problem:
Stationary (elliptic) variational inequality
with a variable thickness of a beam as a control variable.

Uniquely solved state problem enables a simple formulation
of the Optimal control problem.
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Dynamic case

The same geometrical situation, another mechanical
phenomena.
Nonstationary (hyperbolic) variational inequality
as the state problem.

No uniqueness of a solution.
Problems with a priori estimates.

Restrictions in formulating the cost functional
in the Optimal design problem.
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Oscillations of a cantilever beam

An elastic beam

An elastic beam of the length L > 0.
The variable thickness e(x), 0 < e1 ≤ e(x) ≤ e2, x ∈ [0,L].

The material and geometrical characteristic d > 0.
The material density ρ = 1.
The rigid inner obstacle Φ : [0,L] 7→ R.

The beam acting under the perpendicular load
f : Q → R, Q = (0,T ]× (0,L).

u0 : (0,L) 7→ R, v0 : (0,L) 7→ R
- the initial displacement and velocity.
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Oscillations with an obstacle

The classical formulation

The initial-boundary value problem
with an unknown contact force g : (0,T ] 7→ R

e(x)ü + d
(

e3(x)uxx )
)

xx
= f (t , x) + g(t , x), (t , x) ∈ Q, (1)

uxx (t ,0) = [e3(x)uxx ]x (t ,0) = 0, t ∈ (0,T ] (2)

uxx (t ,L) = [e3(x)uxx ]x (t ,L) = 0, t ∈ (0,T ] (3)

u ≥ Φ+
1
2

e, g ≥ 0, (u − Φ− 1
2

e)g = 0, (t , x) ∈ Q (4)

u(0, x) = u0(x), u̇(0, x) = v0(x), x ∈ (0,L). (5)
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Variational formulation

Hilbert spaces

Hilbert space H ≡ L2(0,L),
with the inner product and the norm

(y , z) =

∫ L

0
y(x)z(x) dx , |y |0 = (y , y)1/2, u, v ∈ H

Hilbert space V = H2(0,L) = {y ∈ L2(0,L) : y ′′ ∈ L2(0,L)},
with the inner product and the norm

((y , z)) =

∫ L

0
[y(x)z(x)+y ′′(x)z ′′(x)] dx , ‖y‖ = ((y , y))1/2, y , z ∈ V
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Variational formulation

Convex sets

Basic Banach space V = L∞(I,V )

Convex sets

K(e) :=

{y ∈ V : y(t , x) ≥ Φ(x) +
1
2

e(x) for a.e.(t , x) ∈ (0,T ]× [0,L]}

K (e) :=

{v ∈ V : v(x) ≥ Φ(x) +
1
2

e(x) for all x ∈ [0,L]}
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Variational formulation

Weak solution - variational inequality

Let f ∈ L2(Q), Φ ∈ V , u0 ∈ K (e), v0 ∈ H;
e ∈ H2[0,L], 0 < e1 ≤ e ≤ e2, 〈〈·, ·〉〉 means the duality
between the spaces V∗ and V as the extension of the inner
product in the space L2(Q).

Definition
Function u ∈ K(e) is a weak solution of the problem (1)-(5) if
ü ∈ V∗, the initial conditions (5) are fulfilled in a certain
generalized sense and there holds the inequality

〈〈ü,e(y − u)〉〉+ d
∫

Q
e3(x)uxx (y − u)xx dt dx ≥∫

Q
f (x)(y(t , x)− u(t , x)) dt dx , ∀y ∈ K(e).



Introduction Formulation of the state problem Solving of the state problem Optimal control problem

Variational formulation

Penalized problem

We define for ε > 0
the penalized problem of the variational form:

To find uε ∈ V such that üε ∈ L2(I; V ∗) and

〈〈üε,ey〉〉+

∫
Q

[
de3(x)uεxx yxx − ε−1(uε − Φ(x)− 1

2
e(x))−y

]
dt dx

=

∫
Q

fy dt dx ∀y ∈ L2(I,V ),

(6)

uε(0, x) = u0(x), u̇ε(0, x) = v0(x), x ∈ (0,L). (7)
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Variational formulation

Galerkin method

The existence of a solution to the penalized problem
can be verified by the Galerkin method.

Theorem. There exists a solution u ≡ uε of the problem (6), (7)
fulfilling the estimate

‖u̇ε‖2L∞(I,L2(0,L)) + ‖uε‖2L∞(I,V ) ≤ C(d ,e1,e2,u0, v0, f ),

C(d ,e1,e2,u0, v0, f ) =(
2
e1

+
1

de3
1

)(
e2|v0|20 + de3

2‖u0‖2 +
2
e1
‖f‖2L1(I,L2(0,L))

)
.

(8)
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The limit process to a solution of the original problem

Crucial estimates

The a priori estimates and the convergence process derived in
the previous section imply the estimate

‖u̇ε‖2L∞(I,L2(0,L)) +‖uε‖2L∞(I,V ) + ε−1‖u−ε −Φ−
1
2

e‖2C(̄I,L2(0,L))
≤ c2.

(9)
Let us set y(t , x) ≡ 1 in (6).
The estimate (9) implies after integration through I:

0 ≤ ε−1
∫

Q
(uε − Φ−

1
2

e)− dt dx ≤ c3, ‖üε‖L1(I;V∗) ≤ c4. (10)
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The limit process to a solution of the original problem

The limit process

There exists a sequence εn ↘ 0 , a function u ∈ V ∩ H1(Q)
and a functional g ∈ (L∞(Q))∗ such that
ü ∈ (L∞(I,V ))∗, u̇ ∈ L∞(I,H) ∩ Cw (̄I,H) and for un ≡ uεn the
following convergences hold

ün ⇀
∗ ü in (L∞(I; V ))∗

u̇n ⇀ u̇ in L2(I; V ),

un ⇀
∗ u in V,

un → u in C (̄I,H2−δ(0,L)) ∀δ > 0,

u−n − Φ−
1
2

e→ 0 in C (̄I,H),

ε−1
n (u−n − Φ−

1
2

e) ⇀∗ g in (L∞(Q))∗.

(11)
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The limit process to a solution of the original problem

The operator form

Define the operator A(e) : V 7→ V ∗ by

〈A(e)u, y〉∗ = d
∫ L

0
e3(x)uxxyxx dx , u, y ∈ V . (12)

The limit function u fulfils the equation in V ∗

eü + A(e)u = f + g, (13)

where eü ∈ V∗ is defined by 〈〈eü, y〉〉 = 〈〈ü,ey〉〉 ∀y ∈ V.
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The limit process to a solution of the original problem

Existence theorem

Theorem. Let u0 ∈ K (e), v0 ∈ H, f ∈ L2(Q), Φ ∈ V , e ∈ V ,
0 < e1 ≤ e ≤ e2. Then there exists a weak solution of the State
problem (1)-(5) fulfilling the estimate

‖u̇‖2L∞(I,L2(0,L)) + ‖u‖2L∞(I,V ) ≤ C(d ,e1,e2,u0, v0, f ) (14)

with the constant C(d ,e1,e2,u0, v0, f ) defined in (8).
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Cost functional, admissible controls

Consider a cost functional

J : V × C2([0,L]) 7→ R+

fulfilling

un ⇀
∗ u in V, en → e in C2([0,L])⇒ J(u,e) ≤ lim inf

n→∞
J(un,en).

The set of admissible thicknesses

Ead ={e ∈ H3(0,L) : 0 < e1 ≤ e(x) ≤ e2

∀x ∈ [0,L], ‖e‖H3(0,L) ≤ e3}

Ead is compact in H2(0,L).
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Optimal control problem

We introduce the space of functions

W :=

{v ∈ L∞(I; L2(0,L)) : ∃ v̇ ∈ L∞(I; V )∗ and {vn} ⊂ H1(I; L2(0,L))

such that vn ⇀
∗ v in L∞(I; L2(0,L)), v̇n ⇀

∗ v̇ in L∞(I; V )∗}.

Optimal control problem P.
To find a couple (u∗,e∗) such that

J(u∗,e∗) ≤ J(u,e) ∀(u,e) ∈ Uad (e)× Ead , (15)

Uad (e) = {u ∈ K(e) : u̇ ∈ W, u is a weak solution of (1)− (5),

‖u̇‖2L∞(I;L2(0,L)) + ‖u‖2L∞(I;V ) ≤ C1}.

Uad (e) 6= ∅ for every e ∈ Ead .



Introduction Formulation of the state problem Solving of the state problem Optimal control problem

Existence of the optimal thickness

Let {(un,en)} ∈ Uad (en)× Ead be a minimizing sequence i.e.

lim
n→∞

J(un,en) = inf
Uad (e)×Ead

J(u,e).

There exists (u∗,e∗) ∈ K(e∗)× Ead and a subsequence (un,en)
such that

en → e∗ in H2(0,L), un ⇀ u∗ in V.

It can be verified that (u∗,e∗) is a solution of the minimization
problem (15).
Theorem.
There exists a solution of the Optimal control problem P.
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Thank you
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