Recent contributions to operator ergodic theory

Laurian Suciu

"Lucian Blaga" University of Sibiu, Romania

5-10 September, 2011

joint works with Jaroslav Zemánek, Michael Lin and David Shoikhet An operator $T \in \mathcal{B}(\mathcal{X})$ is called **power bounded** $(T \in PB(\mathcal{X}))$ if

 $\sup_{n\geq 1}||T^n||<\infty.$

T is called **Cesàro bounded** ($T \in CB(\mathcal{X})$) if

 $\sup_{n\geq 0}||M_n(T)||<\infty.$

where $M_n(T) = \frac{1}{n+1} \sum_{j=0}^{n} T^j$.

If $T \in PB(\mathcal{X})$ then $T \in CB(\mathcal{X})$. The converse is not true, in general.

Ex: I - V on $L^1(0, 1)$, $Vf(t) = \int_0^t f(s) ds$ the Volterra operator.

A classical theorem of **Gelfand** asserts that if $\sigma(T) = \{1\}$ while T and T^{-1} are power bounded then T = I.

Esterle-Katznelson-Tzafriri theorem asserts that if T is power bounded then

 $||T^{n+1} - T^n|| = o(1)$ as $n \to \infty$ if and only if $\sigma(T) \cap \mathbb{T} \subset \{1\}$.

Different generalizations of these results were obtained : G. Allan, C. Batty, L. Burlando, D. Drissi, S. Grabiner, L. Kerchy, Z. Leka, O. Nevanlinna, T. Ransford, H. C. Ronnefarth, Y. Tomilov, M. Zarrabi, J. Zemánek.

Allan : If
$$\frac{||T^n||}{n} = o(1)$$
 and $\sigma(T) = \{1\}$, does it follow that $||T^{n+1} - T^n|| = o(1)$, as $n \to \infty$?

The answer is no : **Tomilov-Zemánek** Let T = I - V on $L^{1}(0, 1)$ and

$$\mathcal{T} = \begin{pmatrix} \mathcal{T} & \mathcal{T} - I \\ \mathbf{0} & \mathcal{T} \end{pmatrix}$$
 on $L^1 \oplus L^1$,

then $\frac{\|\mathcal{T}^n\|}{n} = o(1), \sigma(\mathcal{T}) = \{1\}, \text{ and } \|\mathcal{T}^{n+1} - \mathcal{T}^n\| \to \infty \text{ as } n \to \infty.$

If
$$T \in CB(\mathcal{X})$$
 and $\sigma(T) \cap \mathbb{T} = \{1\}$, does it follow that
 $||T^{n+1} - T^n|| = o(1)$, as $n \to \infty$?
The answer is no : **Tomilov-Zemánek**
Let $T(k)$ on $L^2(0, 1)$, $(T(k)x)(t) = te^{i\frac{(1-t)^{\frac{1}{k}}}{k}}x(t)$, $k \ge 1$
 $\mathcal{X} = \bigoplus_{k=1}^{\infty} X_k$, $X_k = L^2 \oplus L^2$, $\mathcal{T} = \bigoplus_{k=1}^{\infty} \mathcal{T}(k)$.
 $\mathcal{T} \in CB(\mathcal{X})$, $\frac{||\mathcal{T}^n||}{n} = o(1)$, $\sigma(\mathcal{T}) \cap \mathbb{T} = \{1\}$, and
 $||\mathcal{T}(\mathcal{T} - I)^m|| \to \infty$, as $n \to \infty$, for all $m \ge 1$.
Z. Léka : Let $T = I - V$ on $L^2(0, 1)$, \mathcal{T} on $L^2 \oplus L^2$. Then
 $\sigma(T) = \{1\}$, $\frac{||\mathcal{T}^n||}{n} = o(1)$, $\mathcal{T} \in CB(L^2 \oplus L^2)$ and
 $||\mathcal{T}^{n+1} - \mathcal{T}^n|| \neq o(1)$, but $||\mathcal{T}^{n+1}x - \mathcal{T}^nx|| = o(1)$, as $n \to \infty$, for
all $x \in L^2 \oplus L^2$.
Suciu-Zemánek : Let $\widehat{\mathcal{T}} \in \mathcal{B}(\mathcal{B}(L^2 \oplus L^2))$, $\widehat{\mathcal{T}}S = \mathcal{T}S$,

Such zemanek. Let $\gamma \in \mathcal{B}(\mathcal{B}(L^2 \oplus L^2))$, $\gamma S = \gamma S$, $S \in \mathcal{B}(L^2 \oplus L^2)$. Then $\sigma(\widehat{\mathcal{T}}) = \{1\}, \widehat{\mathcal{T}} \in CB(\mathcal{B}(L^2 \oplus L^2))$, $\|\widehat{\mathcal{T}}^n\| = o(1)$, and the sequence $\{\widehat{\mathcal{T}}^{n+1} - \widehat{\mathcal{T}}^n\}$ does not converge strongly to 0, but it is a bounded sequence. **Suciu-Zemánek** : If \mathcal{X} is a reflexive Banach space and $T \in CB(\mathcal{X})$ with $\sigma(T) \cap \mathbb{T} = \{1\}$ then $\{T^{n+1} - T^n\}$ strongly converges to 0 if and only if it is bounded.

Suciu-Zemánek : If $T \in CB(\mathcal{X})$ and $\sigma(T) \cap \mathbb{T} = \{1\}$ then $\frac{||T^n||}{n} = o(1)$, as $n \to \infty$.

If \mathcal{X} is reflexive then $M_n(T)x \to Px$, as $n \to \infty$, for all $x \in \mathcal{X}$, where $P \in \mathcal{B}(\mathcal{X})$ is the projection with $\mathcal{N}(P) = \overline{\mathcal{R}(I-T)}$ and $\mathcal{R}(P) = \mathcal{N}(I-T)$.

T is **Cesàro ergodic** if the sequence $\{M_n(T)\}$ strongly converges in $\mathcal{B}(\mathcal{X})$.

Recall (see H. C. Ronnefarth (1996), J. C. Strikwerda and B. A. Wade (1991)) that for $n, p \in \mathbb{N}$, the Cesàro means of order p of $T \in \mathcal{B}(\mathcal{X})$, denoted $M_n^{(p)}(T)$, $n \in \mathbb{N}$, are defined by : $M_0^{(p)}(T) = I$, $M_n^{(0)}(T) = T^n$ and if $n, p \ge 1$,

$$M_n^{(p)}(T) := \frac{p}{(n+1)\dots(n+p)} \sum_{j=0}^n \frac{(j+p-1)!}{j!} M_j^{(p-1)}(T)$$
$$= \frac{p}{(n+1)\dots(n+p)} \sum_{j=0}^n \frac{(n-j+p-1)!}{(n-j)!} T^j.$$

▲ロト▲聞と▲臣と▲臣と 臣 のよの

Recall that $T \in \mathcal{B}(\mathcal{X})$ is **Abel ergodic** if the Abel average $A_{\alpha}(T) = (1 - \alpha) \sum_{k=0}^{\infty} \alpha^k T^k$ has limit in the strong topology of $\mathcal{B}(\mathcal{X})$ as $\alpha \to 1^-$.

Hille : Let $T \in \mathcal{B}(\mathcal{X})$. Then $s - \lim_{n \to \infty} M_n^{(p)} = P$ if and only if (*i*) $s - \lim_{\alpha \to 1^-} (1 - \alpha) \sum_{k=0}^{\infty} \alpha^k T^k = P$; (*ii*) $s - \lim_{n \to \infty} \frac{T^n}{n^p} = 0$. Recall that an operator $T \in \mathcal{B}(\mathcal{X})$ is **Kreiss bounded** $(T \in KB(\mathcal{X}))$ if

$$\sup_{|\lambda|>1}\{(|\lambda|-1)||(\mathit{T}-\lambda \mathit{I})^{-1}||\}<\infty.$$

 $PB(\mathcal{X}) \subset KB(\mathcal{X}) \nsubseteq CB(\mathcal{X})$ and $CB(\mathcal{X}) \nsubseteq KB(\mathcal{X})$.

Strikwerda-Wade : $T \in KB(\mathcal{X})$ if and only if $||M_n^{(2)}(\lambda T)|| = O(1)$, as $n \to \infty$, for every $|\lambda| = 1$.

Nevanlinna, Lin-Shoikhet-Suciu : If $T \in KB(\mathcal{X})$ and $\sigma(T) \cap \mathbb{T} = \{1\}$ then $\frac{||T^n||}{n} = o(1)$, as $n \to \infty$.

◆ロ▶★母▶★国▶★国▶ 国 のQで

Let $T \in KB(\mathcal{X})$ and \mathcal{X} reflexive. Then $\{M_n^{(p)}(T)\}$ strongly converges in \mathcal{X} for every $p \geq 2$.

イロト イポト イヨト イヨト 二日

Let $T \in \mathcal{B}(\mathcal{X})$ and $T \in \mathcal{B}(\mathcal{X} \oplus \mathcal{X})$ be the operator defined by the matrix

$$\mathcal{T} = \begin{pmatrix} \mathcal{T} & \mathcal{T} - \mathcal{I} \\ \mathbf{0} & \mathcal{T} \end{pmatrix}$$

The following statement hold : \mathcal{T} is Kreiss bounded if and only if T is Kreiss bounded and $(|\lambda| - 1)|\lambda - 1||(T - \lambda I)^{-2}|| = O(1) \text{ as } |\lambda| \to 1^+.$

Corollary

If $T \in KB(\mathcal{X})$ such that $(n+1)||T^n(T-I)|| = O(1)$ as $n \to \infty$, then $\mathcal{T} \in KB(\mathcal{X})$ (of previous Theorem).

Corollary

If $T \in \mathcal{B}(\mathcal{X})$ satisfies $\sqrt{n+1}||T^n(T-I)|| = O(1)$ as $n \to \infty$ and $||M_n^{(2)}(\mathcal{T})|| = O(1)$ as $n \to \infty$ then T is power bounded.

Corollary

If $T \in KB(\mathcal{X})$ such that $(n+1)||T^n(T-I)|| = O(1)$ as $n \to \infty$, then $\mathcal{T} \in KB(\mathcal{X})$ (of previous Theorem).

Corollary

If $T \in \mathcal{B}(\mathcal{X})$ satisfies $\sqrt{n+1}||T^n(T-I)|| = O(1)$ as $n \to \infty$ and $||M_n^{(2)}(\mathcal{T})|| = O(1)$ as $n \to \infty$ then T is power bounded.

T is called **uniformly Kreiss bounded** if $||M_n(\lambda T)|| = O(1)$, as $n \to \infty$, for every $|\lambda| = 1$.

Theorem

Let $T \in \mathcal{B}(\mathcal{X})$ and $\mathcal{T} \in \mathcal{B}(\mathcal{X} \oplus \mathcal{X})$ be as in previous Lemma. Then any two of the following statements (a) *T* is uniformly Kreiss bounded, (b) $\|M_n^{(3)}(\lambda T)\| = O(n^{-1})$ as $n \to \infty$, uniformly for λ with $|\lambda| = 1$, (c) \mathcal{T} is Kreiss bounded, imply the other statement.

Let T be a Cesàro bounded operator on \mathcal{X} which satisfies $\lim_{n\to\infty} \frac{\|T^n x\|}{n} = 0$ for every $x \in \mathcal{X}$. Then T is Cesàro ergodic if and only if

$$(I-T)\overline{(I-T)\mathcal{X}} = (I-T)\mathcal{X}.$$
 (1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $T \in \mathcal{B}(\mathcal{X})$ with $\{\frac{T^n}{n}\}$ bounded satisfy (1) and assume that for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly. Then $\lim_{n\to\infty} \frac{||T^nx||}{n} = 0$ for any $x \in \mathcal{X}$.

Corollary

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded. Then T is Cesàro ergodic if (and only if) T satisfies (1) and for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly.

_emma

Let $T \in \mathcal{B}(\mathcal{X})$. Then $\{M_n(T)(I - T)\}$ is bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded. Thus, when $1 \notin \sigma(T)$, T is Cesàro bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded.

Let $T \in \mathcal{B}(\mathcal{X})$ with $\{\frac{T^n}{n}\}$ bounded satisfy (1) and assume that for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly. Then $\lim_{n\to\infty} \frac{||T^nx||}{n} = 0$ for any $x \in \mathcal{X}$.

Corollary

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded. Then T is Cesàro ergodic if (and only if) T satisfies (1) and for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly.

_emma

Let $T \in \mathcal{B}(\mathcal{X})$. Then $\{M_n(T)(I - T)\}$ is bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded. Thus, when $1 \notin \sigma(T)$, T is Cesàro bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded.

Let $T \in \mathcal{B}(\mathcal{X})$ with $\{\frac{T^n}{n}\}$ bounded satisfy (1) and assume that for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly. Then $\lim_{n\to\infty} \frac{||T^nx||}{n} = 0$ for any $x \in \mathcal{X}$.

Corollary

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded. Then T is Cesàro ergodic if (and only if) T satisfies (1) and for some $m \ge 1$ the sequence $\{\frac{1}{n}T^n(T-I)^m\}_{n\ge 1}$ converges to 0 strongly.

Lemma

Let $T \in \mathcal{B}(\mathcal{X})$. Then $\{M_n(T)(I - T)\}$ is bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded. Thus, when $1 \notin \sigma(T)$, T is Cesàro bounded if and only if $\{\frac{1}{n}T^{2n}\}$ is bounded.

Let $T \in \mathcal{B}(\mathcal{X})$ have $r(T) \leq 1$. Then T is uniformly Abel ergodic if and only if it is Abel bounded and $(I - T)\mathcal{X}$ is closed.

Corollary

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded. If $(I - T)\mathcal{X}$ is closed, then T is uniformly Abel ergodic.

There exists a Cesàro bounded uniformly Abel ergodic operator which is not uniformly ergodic.

イロト イヨト イヨト イヨト

Let $T \in \mathcal{B}(\mathcal{X})$ have $r(T) \leq 1$. Then T is uniformly Abel ergodic if and only if it is Abel bounded and $(I - T)\mathcal{X}$ is closed.

Corollary

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded. If $(I - T)\mathcal{X}$ is closed, then T is uniformly Abel ergodic.

There exists a Cesàro bounded uniformly Abel ergodic operator which is not uniformly ergodic.

The following are equivalent for $T \in \mathcal{B}(\mathcal{X})$: (i) $\sup_n ||T^n||/n < \infty$ and T is uniformly Abel ergodic; (ii) T is Cesàro bounded and $(I - T)\mathcal{X}$ is closed.

イロト イポト イヨト イヨト 二日

Let $T \in \mathcal{B}(\mathcal{X})$ satisfy $||T^n||/n \to 0$. Then the following conditions are equivalent: (i) *T* is uniformly ergodic. (ii) All the Abel averages A_{α} , $0 < \alpha < 1$, are uniformly power convergent to a projection *P* of \mathcal{X} onto $\mathcal{N}(I - T)$, i.e.

$$\lim_{n\to\infty} \|A^n_{\alpha} - P\| \to 0 \text{ for each } \alpha \in (0,1).$$
(2)

(iii) For some $\alpha \in (0, 1)$ the operator A_{α} is uniformly power convergent.

For
$$T \in \mathcal{B}(\mathcal{X})$$
 we put

$$S_n(T) = rac{1}{n+1} \sum_{k=0}^n \sum_{j=0}^k T^j, \quad n \in \mathbb{N},$$
 (3)

and

$$\mathcal{S}(T) = \{ x \in \mathcal{X} : \sup_{n \in \mathbb{N}} \| S_n(T) x \| < \infty \}.$$
(4)

▲日▼▲国▼▲国▼▲国▼ 通 もくの

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded such that $\{\frac{T^n}{n}\}$ strongly converges to 0. Then $\mathcal{S}(T)$ is closed if and only if $(I - T)\mathcal{X}$ is closed, and in this case T is Cesàro ergodic.

Corollary

If $T \in \mathcal{B}(\mathcal{X})$ is Cesàro ergodic such that $\mathcal{S}(T)$ is closed, then

 $\mathcal{S}(T) = (I - T)\mathcal{X} = \{x \in \mathcal{X} : \{S_n(T)x\} \text{ converges in } \mathcal{X}\}.$

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 めんぐ

Let $T \in \mathcal{B}(\mathcal{X})$ be Cesàro bounded such that $\{\frac{T^n}{n}\}$ strongly converges to 0. Then $\mathcal{S}(T)$ is closed if and only if $(I - T)\mathcal{X}$ is closed, and in this case T is Cesàro ergodic.

Corollary

If $T \in \mathcal{B}(\mathcal{X})$ is Cesàro ergodic such that $\mathcal{S}(T)$ is closed, then

 $\mathcal{S}(T) = (I - T)\mathcal{X} = \{x \in \mathcal{X} : \{S_n(T)x\} \text{ converges in } \mathcal{X}\}.$

The following are equivalent for a Banach space \mathcal{X} : (i) \mathcal{X} is reflexive;

(ii) Every Cesàro bounded operator T defined on a closed subspace $\mathcal{Y} \subset \mathcal{X}$ such that $\{\frac{T^n}{n}\}$ strongly converges to 0 satisfies

$$(I-T)\mathcal{Y} = \{ y \in \mathcal{Y} : \sup_{n \in \mathbb{N}} \|S_n(T)y\| < \infty \};$$
(5)

・ロト ・日 ・ ・ ヨ ・ ・

(iii) Every Cesàro ergodic operator T defined on a closed subspace $\mathcal{Y} \subset \mathcal{X}$ satisfies (5).

Corollary

Let \mathcal{X} be a reflexive Banach space and T be a Cesàro ergodic operator on \mathcal{X} . Then T is power-bounded if and only if $\mathcal{S}_0(T) = \mathcal{S}(T)$, if and only if $\mathcal{S}_0(T) = (I - T)\mathcal{X}$, where $\mathcal{S}_0(T) := \{y \in \mathcal{Y} : \sup_{n \in \mathbb{N}} \|\sum_{j=0}^n T^j y\|\}.$

Corollary

Let T be a Cesàro bounded operator on \mathcal{X} with $\{\frac{T^n}{n}\}$ strongly convergent to 0. If $\overline{(I-T)\mathcal{X}}$ is a reflexive Banach space then T is Cesàro ergodic.

Corollary

Let \mathcal{X} be a reflexive Banach space and T be a Cesàro ergodic operator on \mathcal{X} . Then T is power-bounded if and only if $\mathcal{S}_0(T) = \mathcal{S}(T)$, if and only if $\mathcal{S}_0(T) = (I - T)\mathcal{X}$, where $\mathcal{S}_0(T) := \{y \in \mathcal{Y} : \sup_{n \in \mathbb{N}} \|\sum_{j=0}^n T^j y\|\}.$

Corollary

Let T be a Cesàro bounded operator on \mathcal{X} with $\{\frac{T^n}{n}\}$ strongly convergent to 0. If $\overline{(I-T)\mathcal{X}}$ is a reflexive Banach space then T is Cesàro ergodic.

For a Banach space \mathcal{X} with a basis the following are equivalent: (i) \mathcal{X} is reflexive;

(ii) Every Cesàro ergodic operator T on \mathcal{X} satisfies

$$\mathcal{S}(T) = (I - T)\overline{(I - T)\mathcal{X}};$$

(iii) Every Cesàro ergodic operator T on \mathcal{X} satisfies $\mathcal{S}(T) = (I - T)\mathcal{X}$.