Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control

Nemecká, September 5-10, 2011

METHOD OF RELIABLE SOLUTION IN HOMOGENIZATION

Jan Franců joint work with
Luděk Nechvátal

Institut of Mathematics
Faculty of Mechanical Engineering
Brno University of Technology
e-mail: francu@fme.vutbr.cz

Uncertain data problem and Reliable solution

Mathematical modeling of an engineering problem

- Differential equation(s)
- Boundary and/or initial conditions
- Data of the problem: domain and its boundary, coefficients, functions in the equation and in the conditions.

Uncertain data problem and Reliable solution

Mathematical modeling of an engineering problem

- Differential equation(s)
- Boundary and/or initial conditions
- Data of the problem: domain and its boundary, coefficients, functions in the equation and in the conditions.
Problem:
data are not known exactly:
every coefficient can be anywhere within an interval also geometry is not know exactly

Solutions

Stochastic approach

- data: random variables, distribution function, ...
- stochastic differential equations
- complicated theory, ...

Solutions

Stochastic approach

- data: random variables, distribution function, ...
- stochastic differential equations
- complicated theory, ...

Babuška's idea: Deterministic approach

- full deterministic model
- all possible data are considered
- the worst situation is looked for
- using optimization algorithms

Basic idea

Problem with uncertain data
Reliable solution
Worst scenario method

Basic idea

Problem with uncertain data

Reliable solution

Worst scenario method

- choose a set $\mathscr{U}^{\text {ad }}$ of all admissible data a
- find solution u_{a} of the problem ($\mathbf{P}[a]$) with data a
- chose a critical functional $\Phi(u)$ on the solution u
- look for the maximum value of $\Phi\left(u_{a}\right)$ for $u \in \mathscr{U}^{\text {ad }}$
- find a the giving maximum value.

- I. Hlaváček, J. Chleboun, I. Babuška:

Uncertain input data problems and the worst scenario method, Applied Mathematics and Mechanics, North Holland 2004.

Homogenization

- Physical setting

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |

Homogenization

- Physical setting

- Mathematical setting

$$
-\operatorname{div}\left(a_{p}(x) \nabla u_{p}\right)=f
$$

Homogenization

- Physical setting

- Mathematical setting

$$
-\operatorname{div}\left(a_{p}(x) \nabla u_{p}\right)=f \quad-\operatorname{div}(b \nabla u)=f
$$

- Computation reason: fine structure needs fine discretization and large number of unknowns and equations.

Homogenization-Mathematical Approach

- Sequence of problems with diminishing period (Babuška 1972)

Homogenization-Mathematical Approach

- Sequence of problems with diminishing period (Babuška 1972)

- In the mathematical setting: $\quad\left\{\varepsilon_{h}\right\}, \quad \varepsilon_{h} \rightarrow 0$

$$
-\operatorname{div}\left(a^{\varepsilon}(x) u^{\varepsilon}\right)=f \quad a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right) \quad a(y)-Y \text {-periodic }
$$

Homogenization-Mathematical Approach

- Sequence of problems with diminishing period (Babuška 1972)

- In the mathematical setting: $\quad\left\{\varepsilon_{h}\right\}, \quad \varepsilon_{h} \rightarrow 0$

$$
-\operatorname{div}\left(a^{\varepsilon}(x) u^{\varepsilon}\right)=f \quad a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right) \quad a(y)-Y \text {-periodic }
$$

- Questions:
- Convergence of the solutions $u^{\varepsilon} \rightarrow u^{*}$
- Form of the limit problem $-\operatorname{div}\left(b u^{*}\right)=f$
- Formulae for the so-called homogenized coefficients b,

Model problem

Linear elliptic problem

$$
\begin{gathered}
-\operatorname{div}\left(a \nabla u_{a}\right) \equiv-\sum_{i=1, j}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)=f \quad \text { in } \Omega \\
u_{a}=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

Model problem

Linear elliptic problem

$$
\begin{gathered}
-\operatorname{div}\left(a \nabla u_{a}\right) \equiv-\sum_{i=1, j}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)=f \quad \text { in } \Omega \\
u_{a}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

The solution is taken in the so-called weak sense:
Problem ($\mathbf{P}[a]$) Find a function $u_{a} \in W_{0}^{1,2}(\Omega)$ satisfying

$$
a_{a}\left(u_{a}, v\right) \equiv \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}(x) \frac{\partial u_{a}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x . \quad \forall v \in W_{0}^{1,2}(\Omega)
$$

Assumptions

$$
\Omega \text { - domain with Lipschitz boundary, } \quad f \in L^{2}(\Omega)
$$

Assumptions

Ω - domain with Lipschitz boundary, $f \in L^{2}(\Omega) \quad$ and coefficient matrix $a_{i j} \in L^{\infty}(\Omega), \quad a_{j i}=a_{i j}$,

$$
\alpha \sum_{i=1}^{N} \xi_{i}^{2} \leq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{j} \xi_{i} \leq M \sum_{i=1}^{N} \xi_{i}^{2} \quad \forall \xi \in \mathbb{R}^{N}
$$

Assumptions

Ω - domain with Lipschitz boundary, $f \in L^{2}(\Omega) \quad$ and coefficient matrix $a_{i j} \in L^{\infty}(\Omega), \quad a_{j i}=a_{i j}$,

$$
\alpha \sum_{i=1}^{N} \xi_{i}^{2} \leq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{j} \xi_{i} \leq M \sum_{i=1}^{N} \xi_{i}^{2} \quad \forall \xi \in \mathbb{R}^{N}
$$

Notation: $\mathscr{E}(\alpha, M)$ - set of all such coefficient matrix a with $0<\alpha \leq M$.

Assumptions

Ω - domain with Lipschitz boundary, $f \in L^{2}(\Omega) \quad$ and coefficient matrix $a_{i j} \in L^{\infty}(\Omega), \quad a_{j i}=a_{i j}$,

$$
\alpha \sum_{i=1}^{N} \xi_{i}^{2} \leq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{j} \xi_{i} \leq M \sum_{i=1}^{N} \xi_{i}^{2} \quad \forall \xi \in \mathbb{R}^{N}
$$

Notation: $\mathscr{E}(\alpha, M)$ - set of all such coefficient matrix a with $0<\alpha \leq M$.

Following the Lax-Milgram lemma Problem ($\mathbf{P}[a])$ for $a \in \mathscr{E}(\alpha, M)$ admits unique solution u_{a}

Assumptions

Ω - domain with Lipschitz boundary, $f \in L^{2}(\Omega) \quad$ and coefficient matrix $a_{i j} \in L^{\infty}(\Omega), \quad a_{j i}=a_{i j}$,

$$
\alpha \sum_{i=1}^{N} \xi_{i}^{2} \leq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{j} \xi_{i} \leq M \sum_{i=1}^{N} \xi_{i}^{2} \quad \forall \xi \in \mathbb{R}^{N}
$$

Notation: $\mathscr{E}(\alpha, M)$ - set of all such coefficient matrix a with $0<\alpha \leq M$.

Following the Lax-Milgram lemma Problem ($\mathbf{P}[a])$ for $a \in \mathscr{E}(\alpha, M)$ admits unique solution u_{a} and, in addition,

$$
\left\|u_{a}\right\|_{1,2} \leq \frac{1}{\alpha}\|f\|_{2}
$$

Homogenization - preliminaries

Scale - a sequence $E=\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \quad \varepsilon_{n}>\varepsilon \rightarrow 0$ The sequences are denoted with a superscript $\varepsilon_{n} \in E, a^{\varepsilon_{n}} \rightarrow a^{\varepsilon}$.

Homogenization - preliminaries

Scale - a sequence $E=\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \varepsilon_{n}>\varepsilon \rightarrow 0$
The sequences are denoted with a superscript $\varepsilon_{n} \in E, a^{\varepsilon_{n}} \rightarrow a^{\varepsilon}$.
Basic cell $-Y=\langle 0,1)^{N}$.
shifted cells $Y_{k}=Y+k=\{y+k \mid y \in Y\} \quad k_{i} \in \mathbb{Z}-a$ pavement of the space \mathbb{R}^{N},

Homogenization - preliminaries

Scale - a sequence $E=\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \quad \varepsilon_{n}>\varepsilon \rightarrow 0$
The sequences are denoted with a superscript $\varepsilon_{n} \in E, a^{\varepsilon_{n}} \rightarrow a^{\varepsilon}$.
Basic cell $-Y=\langle 0,1)^{N}$.
shifted cells $Y_{k}=Y+k=\{y+k \mid y \in Y\} \quad k_{i} \in \mathbb{Z}-a$ pavement of the space \mathbb{R}^{N},
Y-periodic function: if $a(y+k)=a(y) \forall y \in \mathbb{R}^{N} \forall k \in \mathbb{Z}^{N}$.

Homogenization - preliminaries

Scale - a sequence $E=\left\{\varepsilon_{n}\right\}_{n=1}^{\infty} \quad \varepsilon_{n}>\varepsilon \rightarrow 0$
The sequences are denoted with a superscript $\varepsilon_{n} \in E, a^{\varepsilon_{n}} \rightarrow a^{\varepsilon}$.
Basic cell $-Y=\langle 0,1)^{N}$.
shifted cells $Y_{k}=Y+k=\{y+k \mid y \in Y\} \quad k_{i} \in \mathbb{Z}-a$ pavement of the space \mathbb{R}^{N},
Y-periodic function: if $a(y+k)=a(y) \forall y \in \mathbb{R}^{N} \forall k \in \mathbb{Z}^{N}$.
Let a be a Y-periodic function, then

$$
a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right) \equiv a\left(\frac{x_{1}}{\varepsilon}, \ldots, \frac{x_{N}}{\varepsilon}\right), \quad x \in \Omega
$$

is a sequence $\left\{a^{\varepsilon} \mid \varepsilon \in E\right\}$ of Y^{ε}-periodic functions on Ω with diminishing period ε.

Homogenization - formulation of the problem

For $\varepsilon \in E$ and a Y-periodic matrix function $a: \Omega \rightarrow \mathbb{R}^{N \times N}$ we obtain a ε-periodic functions $a_{i j}^{\varepsilon}$ and problem with ε-periodic coefficients:
Problem ($\mathbf{P}\left[a^{\varepsilon}\right]$) Find a function $u_{a^{\varepsilon}} \in W_{0}^{1,2}(\Omega)$ satisfying

$$
a_{a^{\varepsilon}}\left(u_{a^{\varepsilon}}, v\right) \equiv \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{a^{\varepsilon}}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \quad \forall v \in W_{0}^{1,2}(\Omega)
$$

Homogenization - formulation of the problem

For $\varepsilon \in E$ and a Y-periodic matrix function $a: \Omega \rightarrow \mathbb{R}^{N \times N}$ we obtain a ε-periodic functions $a_{i j}^{\varepsilon}$ and problem with ε-periodic coefficients:
Problem ($\mathbf{P}\left[a^{\varepsilon}\right]$) Find a function $u_{a^{\varepsilon}} \in W_{0}^{1,2}(\Omega)$ satisfying
$a_{a^{\varepsilon}}\left(u_{a^{\varepsilon}}, v\right) \equiv \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{a^{\varepsilon}}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f v \mathrm{~d} x \quad \forall v \in W_{0}^{1,2}(\Omega)$.
The problem ($\mathbf{P}\left[a^{\varepsilon}\right]$) admits unique solution $u_{a^{\varepsilon}}$.

Homogenization - results

Taking a scale $E=\{\varepsilon\}$ we obtain a sequence $\left\{u_{a^{\varepsilon}}\right\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

Homogenization - results

Taking a scale $E=\{\varepsilon\}$ we obtain a sequence $\left\{u_{a^{\varepsilon}}\right\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

- The well known result:

$$
u_{a^{\varepsilon}} \rightarrow u_{b^{a}} \quad \text { weakly in } \quad W^{1,2}(\Omega)
$$

Homogenization - results

Taking a scale $E=\{\varepsilon\}$ we obtain a sequence $\left\{u_{a^{\varepsilon}}\right\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

- The well known result:

$$
u_{a^{\varepsilon}} \rightarrow u_{b^{a}} \quad \text { weakly in } \quad W^{1,2}(\Omega)
$$

- $u_{b^{a}}$ is a solution to the same type problem but with the so-called homogenized coefficients - matrix of constant function b^{a} :
$\operatorname{Problem}\left(\mathbf{P}\left[b^{a}\right]\right)$ Find a function $u_{b^{a}} \in W_{0}^{1,2}(\Omega)$ satisfying

$$
a_{b^{a}}\left(u_{b^{a}}, v\right) \equiv \int_{\Omega} \sum_{i, j=1}^{N} b_{i j}^{a} \frac{\partial u_{b^{a}}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x . \quad \forall v \in W_{0}^{1,2}(\Omega)
$$

Homogenized coefficients

- The homogenized coefficients b^{a} are given by

$$
b_{i j}^{a}=\int_{Y}\left[a_{i j}(y)+\sum_{k=1}^{N} a_{i k}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y)\right] \mathrm{d} y,
$$

Homogenized coefficients

- The homogenized coefficients b^{a} are given by

$$
b_{i j}^{a}=\int_{Y}\left[a_{i j}(y)+\sum_{k=1}^{N} a_{i k}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y)\right] \mathrm{d} y,
$$

where w_{a}^{k} are Y-periodic solutions to
$\operatorname{Problem}\left(\mathbf{P}_{\mathrm{per}}[a]\right)$ Find $w_{a}=\left(w_{a}^{1}, \ldots, w_{a}^{N}\right), w_{a}^{k} \in W_{p e r}^{1,2}(Y)$:

$$
\begin{aligned}
& \int_{Y}\left[\sum_{i, j=1}^{N} a_{i j}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial y_{i}}+\sum_{i=1}^{N} a_{i k}(y) \frac{\partial \varphi}{\partial y_{i}}\right] \mathrm{d} y=0 \quad \forall \varphi \in W_{\text {per }}^{1,2}(Y) \\
& \int_{Y} w_{a}^{k}(y) \mathrm{d} y=0 .
\end{aligned}
$$

Homogenized coefficients

- The homogenized coefficients b^{a} are given by

$$
b_{i j}^{a}=\int_{Y}\left[a_{i j}(y)+\sum_{k=1}^{N} a_{i k}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y)\right] \mathrm{d} y,
$$

where w_{a}^{k} are Y-periodic solutions to
$\operatorname{Problem}\left(\mathbf{P}_{\mathrm{per}}[a]\right)$ Find $w_{a}=\left(w_{a}^{1}, \ldots, w_{a}^{N}\right), w_{a}^{k} \in W_{\text {per }}^{1,2}(Y)$:

$$
\begin{aligned}
& \int_{Y}\left[\sum_{i, j=1}^{N} a_{i j}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial y_{i}}+\sum_{i=1}^{N} a_{i k}(y) \frac{\partial \varphi}{\partial y_{i}}\right] \mathrm{d} y=0 \quad \forall \varphi \in W_{\text {per }}^{1,2}(Y) \\
& \int_{Y} w_{a}^{k}(y) \mathrm{d} y=0 .
\end{aligned}
$$

- The homogenized coefficients $b_{i j}^{a}$ form also a positive definitive matrix.
- If $a_{i j}$ are symmetric, then the matrix b^{a} is in the same class $\mathscr{E}(\alpha, M)$.

Uncertain data

- Two component composite material is considered: $Y=Y_{1} \cup Y_{0}$ - reinforcing fibres and matrix.
-

$$
a_{i j}(y)= \begin{cases}p_{i j}^{1} & \text { for } y \in Y_{1}, \\ p_{i j}^{0} & \text { for } y \in Y_{0}\end{cases}
$$

- The set of all such functions $a_{i j}(y)$ with $p_{i j}^{1} \in l_{i j}^{1}$ and $p_{i j}^{0} \in l_{i j}^{0}$
assumed, that it is a subset of $\mathscr{E}(\alpha, M)$ will be the set of admissible functions $\mathscr{U}^{\text {ad }}$.
- By its construction it is a bounded closed subset in $L_{\text {per }}^{\infty}(Y)$
- $\mathscr{U}^{\text {ad }}$ is finite dimensional - it is compact

Criterion functional

How to choose the functional Φ evaluating dangerous situations?

- Functions from $W^{1,2}(\Omega)$ need not be continuous

Criterion functional

How to choose the functional Φ evaluating dangerous situations?

- Functions from $W^{1,2}(\Omega)$ need not be continuous
- Choose small Ω^{*} of Ω which covers the critical place and put the integral mean of over it.

Criterion functional

How to choose the functional Φ evaluating dangerous situations?

- Functions from $W^{1,2}(\Omega)$ need not be continuous
- Choose small Ω^{*} of Ω which covers the critical place and put the integral mean of over it.
- In homogenization the values of the homogenized solution $u_{b^{a}}$ are tested:

$$
\Phi(a)=\frac{1}{\left|\Omega^{*}\right|} \int_{\Omega^{*}} u_{b^{a}}(x) \mathrm{d} x,
$$

Criterion functional

How to choose the functional Φ evaluating dangerous situations?

- Functions from $W^{1,2}(\Omega)$ need not be continuous
- Choose small Ω^{*} of Ω which covers the critical place and put the integral mean of over it.
- In homogenization the values of the homogenized solution $u_{b^{a}}$ are tested:

$$
\Phi(a)=\frac{1}{\left|\Omega^{*}\right|} \int_{\Omega^{*}} u_{b^{a}}(x) \mathrm{d} x
$$

- Another possibility is to test gradient of the homogenized solution u_{b}.

Main result

Theorem. The functional Φ on $\mathscr{U}^{\text {ad }}$ attains its maximum.

Main result

Theorem. The functional Φ on $\mathscr{U}^{\text {ad }}$ attains its maximum.

Idea of the proof.

- Take a maximizing sequence a_{n}.
- Due to compactness of $\mathscr{U}^{\text {ad }}$ there is a subsequence $a_{n^{\prime}}$ converging to a^{*}
- Due to continuity based on estimates $\lim _{n^{\prime} \rightarrow \infty} \Phi\left(a_{n^{\prime}}\right)=\Phi\left(a^{*}\right)$
- a^{*} yields the maximum value on $\mathscr{U}^{\text {ad }}$

Estimates

$$
\left|\Phi(a)-\Phi\left(a^{\prime}\right)\right| \leq \text { const. }\left\|u_{b^{a}}-u_{b^{a^{\prime}}}\right\|_{W^{1,2}(\Omega)},
$$

Estimates

$$
\begin{aligned}
& \left|\Phi(a)-\Phi\left(a^{\prime}\right)\right| \leq \text { const. }\left\|u_{b^{a}}-u_{b^{a^{\prime}}}\right\|_{W^{1,2}(\Omega)} \\
& \left\|u_{b^{a}}-u_{b^{a^{\prime}}}\right\| W^{1,2}(\Omega) \leq \text { const. } \max _{i, j}\left|b_{i j}^{a}-b_{i j}^{a^{\prime}}\right|
\end{aligned}
$$

Estimates

$$
\begin{gathered}
\left|\Phi(a)-\Phi\left(a^{\prime}\right)\right| \leq \text { const. }\left\|u_{b^{a}}-u_{b^{a^{\prime}}}\right\|_{W^{1,2}(\Omega)} \\
\left\|u_{b^{a}}-u_{b^{a^{\prime}}}\right\|_{W^{1,2}(\Omega)} \leq \text { const. } \max _{i, j}\left|b_{i j}^{a}-b_{i j}^{a^{\prime}}\right| \\
\left.\max _{i, j}\left|b_{i j}^{a}-b_{i j}^{a^{\prime}}\right| \leq \text { const. }\left\|w_{a}-w_{a^{\prime}}\right\|_{W_{\text {per }}^{1,2}\left(Y, \mathbb{R}^{N}\right)},\right]
\end{gathered}
$$

Estimates

$$
\begin{gathered}
\left|\Phi(a)-\Phi\left(a^{\prime}\right)\right| \leq \text { const. }\left\|u_{b^{a}}-u_{b^{\prime}}\right\|_{W^{1,2}(\Omega)}, \\
\left\|u_{b^{a}}-u_{b^{\prime}}\right\| \|_{W^{1,2}(\Omega)} \leq \text { const. } \max _{i, j}\left|b_{i j}-b_{i j}^{a^{\prime}}\right|, \\
\left.\max _{i, j}\left|b_{i j}^{a}-b_{i j}^{a^{\prime}}\right| \leq \text { const. }\left\|w_{a}-w_{a^{\prime}}\right\|_{W_{\operatorname{per}}^{1,2}\left(Y, \mathbb{R}^{N}\right)},\right] \\
\left\|w_{a}-w_{a^{\prime}}\right\|_{W_{p^{2}(}^{12}(Y)} \leq \text { const. }\left\|a-a^{\prime}\right\|_{L^{\infty}\left(Y, \mathbb{R}^{N \times N}\right)} .
\end{gathered}
$$

Generalizations

- Problems with strongly monotone operator
- Evolution problems
- uncertainty in geometry

