Criteria for normality via *C*₀-semigroups and moment sequences

Dariusz Cichoń

(based on a joint paper with I.B. Jung and J. Stochel)

September 2011, Nemecká

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be a bounded Hilbert space operator.

・ロト ・回 ト ・ ヨト ・ ヨトー

2

Let *A* be a bounded Hilbert space operator. Can we deduce the normality of *A* from properties of the function $[0, \infty) \ni t \mapsto ||e^{tA}f||$? (*f* – arbitrary vector)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Let A be a bounded Hilbert space operator.

Can we deduce the normality of *A* from properties of the function $[0, \infty) \ni t \mapsto ||e^{tA}f||$? (*f* – arbitrary vector)

Not in general; we have to consider also $[0,\infty) \ni t \mapsto ||e^{tA^*}f||.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let A be a bounded Hilbert space operator.

Can we deduce the normality of *A* from properties of the function $[0, \infty) \ni t \mapsto ||e^{tA}f||$? (*f* – arbitrary vector)

Not in general; we have to consider also $[0,\infty) \ni t \mapsto \|e^{tA^*}f\|.$

This leads to a Friedland's result (1982).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A is normal if and only if

・ロン・西方・ ・ ヨン・ ヨン・

2

A is normal if and only if the functions

 $[0,\infty)
i t \mapsto \log \|e^{tA}f\|$ and $[0,\infty)
i t \mapsto \log \|e^{tA^*}f\|$

are convex for all f.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

A is normal if and only if the functions

 $[0,\infty) \ni t \mapsto \log \|e^{tA}f\|$ and $[0,\infty) \ni t \mapsto \log \|e^{tA^*}f\|$ are convex for all *f*.

The proof is long and involved,

A is normal if and only if the functions

 $[0,\infty) \ni t \mapsto \log \|e^{tA}f\|$ and $[0,\infty) \ni t \mapsto \log \|e^{tA^*}f\|$

are convex for all f.

The proof is long and involved, but the implication " \Rightarrow " is easy basing on the spectral theorem.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

If we want unbounded operator A,

ヘロト 人間 とくほとくほとう

If we want unbounded operator *A*, then the natural replacement for e^{tA} is the *C*₀-semigroup $\{S(t)\}_{t \ge 0}$

ヘロト 人間 とくほとくほとう

3

If we want unbounded operator *A*, then the natural replacement for e^{tA} is the *C*₀-semigroup $\{S(t)\}_{t\geq 0}$

having A as its infinitesimal generator.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

If we want unbounded operator A,

then the natural replacement for e^{tA} is the C_0 -semigroup $\{S(t)\}_{t \ge 0}$

having A as its infinitesimal generator.

Then $\{S(t)^*\}_{t\geq 0}$ is the proper replacement for e^{tA^*} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

A family $\{S(t)\}_{t \ge 0}$ of bounded operators is called a C_0 -semigroup if

- $S(t_1 + t_2) = S(t_1)S(t_2),$
- S(0) is the identity operator,

•
$$\lim_{t\to 0+} S(t)f = f$$
 for all f .

A is called the **infinitesimal generator** of $\{S(t)\}_{t \ge 0}$ if

$$Af = \lim_{t \to 0+} \frac{1}{t} (S(t)f - f)$$

for all f, for which the limit exists (this is the domain of A).

・ロト ・四ト ・ヨト ・ヨト

A family $\{S(t)\}_{t \ge 0}$ of bounded operators is called a C_0 -semigroup if

•
$$S(t_1 + t_2) = S(t_1)S(t_2),$$

• S(0) is the identity operator,

•
$$\lim_{t\to 0+} S(t)f = f$$
 for all f .

A is called the **infinitesimal generator** of $\{S(t)\}_{t \ge 0}$ if

$$Af = \lim_{t \to 0+} \frac{1}{t} (S(t)f - f)$$

for all *f*, for which the limit exists (this is the domain of *A*).

ヘロン 人間 とくほど くほとう

3

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

Dariusz Cichoń Criteria for normality

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

(i) A is normal,

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

- (i) A is normal,
- (ii) for every $h \in \mathcal{H}$ the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \infty)$,

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

ヘロン 人間 とくほ とくほ とう

ъ

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

- (i) A is normal,
- (ii) for every $h \in \mathcal{H}$ the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \infty)$,
- (iii) for every $h \in \mathcal{H}$ there exists $\varepsilon_h \in (0, \infty)$ such that the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \varepsilon_h)$.

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

イロト イポト イヨト イヨト 一日

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

- (i) A is normal,
- (ii) for every $h \in \mathcal{H}$ the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \infty)$,
- (iii) for every $h \in \mathcal{H}$ there exists $\varepsilon_h \in (0, \infty)$ such that the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \varepsilon_h)$.

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

ヘロン 人間 とくほ とくほ とう

The proof of (i) \Rightarrow (ii). Take $h \in H$, $\alpha \in (0, 1)$, $t_1, t_2 \in [0, \infty)$. Then

$$\|S(\alpha t_{1} + (1 - \alpha)t_{2})h\|^{2} = \int_{\mathbb{C}} |e^{\alpha t_{1}\lambda}|^{2} \cdot |e^{(1 - \alpha)t_{2}\lambda}|^{2} \mu_{h}(d\lambda)$$
$$\leq \left(\int_{\mathbb{C}} (|e^{\alpha t_{1}\lambda}|^{2})^{\frac{1}{\alpha}} \mu_{h}(d\lambda)\right)^{\alpha} \left(\int_{\mathbb{C}} (|e^{(1 - \alpha)t_{2}\lambda}|^{2})^{\frac{1}{1 - \alpha}} \mu_{h}(d\lambda)\right)^{1 - \alpha}$$
$$= \|S(t_{1})h\|^{2\alpha} \|S(t_{2})h\|^{2(1 - \alpha)}.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The proof of (i) \Rightarrow (ii). Take $h \in \mathcal{H}$, $\alpha \in (0, 1)$, $t_1, t_2 \in [0, \infty)$. Then

$$\|S(\alpha t_1 + (1 - \alpha)t_2)h\|^2 = \int_{\mathbb{C}} |e^{\alpha t_1\lambda}|^2 \cdot |e^{(1 - \alpha)t_2\lambda}|^2 \mu_h(d\lambda)$$
$$\leq \left(\int_{\mathbb{C}} (|e^{\alpha t_1\lambda}|^2)^{\frac{1}{\alpha}} \mu_h(d\lambda)\right)^{\alpha} \left(\int_{\mathbb{C}} (|e^{(1 - \alpha)t_2\lambda}|^2)^{\frac{1}{1 - \alpha}} \mu_h(d\lambda)\right)^{1 - \alpha}$$
$$= \|S(t_1)h\|^{2\alpha} \|S(t_2)h\|^{2(1 - \alpha)}.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The proof of (i) \Rightarrow (ii). Take $h \in H$, $\alpha \in (0, 1)$, $t_1, t_2 \in [0, \infty)$. Then

$$\begin{split} \|S(\alpha t_1 + (1-\alpha)t_2)h\|^2 &= \int_{\mathbb{C}} |e^{\alpha t_1\lambda}|^2 \cdot |e^{(1-\alpha)t_2\lambda}|^2 \mu_h(d\lambda) \\ &\leq \Big(\int_{\mathbb{C}} (|e^{\alpha t_1\lambda}|^2)^{\frac{1}{\alpha}} \mu_h(d\lambda)\Big)^{\alpha} \Big(\int_{\mathbb{C}} (|e^{(1-\alpha)t_2\lambda}|^2)^{\frac{1}{1-\alpha}} \mu_h(d\lambda)\Big)^{1-\alpha} \\ &= \|S(t_1)h\|^{2\alpha} \|S(t_2)h\|^{2(1-\alpha)}. \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

A – the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \ge 0}$. Then

- (i) A is normal,
- (ii) for every $h \in \mathcal{H}$ the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \infty)$,
- (iii) for every $h \in \mathcal{H}$ there exists $\varepsilon_h \in (0, \infty)$ such that the functions $t \mapsto \log ||S(t)h||$ and $t \mapsto \log ||S(t)^*h||$ are convex on $[0, \varepsilon_h)$.

Moreover, if (i) holds, then $\mathcal{N}(S(t)) = \{0\}, t \ge 0$.

ヘロン 人間 とくほ とくほ とう

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 .

(ii)⇒(iii). Trivial. (ii)⇒(i). By convexity we have

$$\log \|S(t)h\| \leqslant \frac{1}{2} \big(\log \|S(0)h\| + \log \|S(2t)h\| \big), \quad h \in \mathcal{H},$$

which means that

$$\|\boldsymbol{S}(t)\boldsymbol{h}\|^2 \leqslant \|\boldsymbol{h}\| \cdot \|\boldsymbol{S}(t)^2\boldsymbol{h}\|, \quad \boldsymbol{h} \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

ヘロン 人間 とくほど 人 ほとう

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leqslant \frac{1}{2} \big(\log \|S(0)h\| + \log \|S(2t)h\| \big), \quad h \in \mathcal{H},$$

which means that

$$\|S(t)h\|^2 \leqslant \|h\| \cdot \|S(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

・ロト ・ 理 ト ・ ヨ ト ・

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leq rac{1}{2} ig(\log \|S(0)h\| + \log \|S(2t)h\| ig), \quad h \in \mathcal{H},$$

which means that

$$\|S(t)h\|^2 \leqslant \|h\| \cdot \|S(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

・ロト ・ 理 ト ・ ヨ ト ・

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leqslant \frac{1}{2} \big(\log \|S(0)h\| + \log \|S(2t)h\| \big), \quad h \in \mathcal{H},$$

which means that

$$\|S(t)h\|^2 \leq \|h\| \cdot \|S(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

ヘロン ヘアン ヘビン ヘビン

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leqslant \frac{1}{2} \big(\log \|S(0)h\| + \log \|S(2t)h\| \big), \quad h \in \mathcal{H},$$

which means that

$$\|S(t)h\|^2 \leq \|h\| \cdot \|S(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

ヘロア ヘビア ヘビア・

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leqslant \frac{1}{2} \big(\log \|S(0)h\| + \log \|S(2t)h\| \big), \quad h \in \mathcal{H},$$

which means that

$$\|S(t)h\|^2 \leq \|h\| \cdot \|S(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

(4回) (日) (日)

Proof of (iii) \Rightarrow (ii) is based on a lemma stating that a differentiable function on [*a*, *b*), which is convex on the left from every point, is convex of class C^1 . (ii) \Rightarrow (iii). Trivial. (ii) \Rightarrow (i). By convexity we have

$$\log \|S(t)h\| \leq rac{1}{2} ig(\log \|S(0)h\| + \log \|S(2t)h\| ig), \quad h \in \mathcal{H},$$

which means that

$$\|\mathcal{S}(t)h\|^2 \leqslant \|h\| \cdot \|\mathcal{S}(t)^2h\|, \quad h \in \mathcal{H},$$

thus S(t) is paranormal. So is $S(t)^*$. Moreover, kernels S(t) and $S(t)^*$ are equal (since both equal to $\{0\}$). By the Ando theorem we get the normality of S(t), hence normality of A.

ヘロン 人間 とくほとく ほとう

The infinitesimal generator of a compact C_0 -semigroup $\{S(t)\}_{t\in[0,\infty)}$ is normal if and only if the function $t \mapsto \log \|S(t)h\|$ is convex on $[0,\infty)$ for every $h \in \mathcal{H}$.

Proof. Convexity \Rightarrow paranormality of $S(t) \Rightarrow$ normality of S(t)(by Istrăţescu, Saitô & Yoshino, 1966) \Rightarrow normality of A.

ヘロト ヘアト ヘビト ヘビト

The infinitesimal generator of a compact C_0 -semigroup $\{S(t)\}_{t\in[0,\infty)}$ is normal if and only if the function $t\mapsto \log \|S(t)h\|$ is convex on $[0,\infty)$ for every $h\in \mathcal{H}$.

Proof. Convexity \Rightarrow paranormality of $S(t) \Rightarrow$ normality of S(t)(by Istrăţescu, Saitô & Yoshino, 1966) \Rightarrow normality of A.

ヘロト ヘアト ヘビト ヘビト

The infinitesimal generator of a compact C_0 -semigroup $\{S(t)\}_{t\in[0,\infty)}$ is normal if and only if the function $t\mapsto \log ||S(t)h||$ is convex on $[0,\infty)$ for every $h\in \mathcal{H}$.

Proof. Convexity \Rightarrow paranormality of $S(t) \Rightarrow$ normality of S(t)(by Istrăţescu, Saitô & Yoshino, 1966) \Rightarrow normality of A.

ヘロト ヘアト ヘビト ヘビト

The infinitesimal generator of a compact C_0 -semigroup $\{S(t)\}_{t\in[0,\infty)}$ is normal if and only if the function $t\mapsto \log \|S(t)h\|$ is convex on $[0,\infty)$ for every $h\in \mathcal{H}$.

Proof. Convexity \Rightarrow paranormality of $S(t) \Rightarrow$ normality of S(t)(by Istrăţescu, Saitô & Yoshino, 1966) \Rightarrow normality of A.

ヘロト 人間 ト ヘヨト ヘヨト

The infinitesimal generator of a compact C_0 -semigroup $\{S(t)\}_{t\in[0,\infty)}$ is normal if and only if the function $t\mapsto \log \|S(t)h\|$ is convex on $[0,\infty)$ for every $h\in \mathcal{H}$.

Proof. Convexity \Rightarrow paranormality of $S(t) \Rightarrow$ normality of S(t)(by Istrăţescu, Saitô & Yoshino, 1966) \Rightarrow normality of A.

ヘロト 人間 ト ヘヨト ヘヨト

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{||A^nh||^{2j}\}_{n=0}^{\infty}$ and $\{||A^{*n}h||^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

$$\begin{array}{l} (\Rightarrow) \text{ Mainly by the spectral theorem.} \\ (\Leftarrow) \\ (\|Ah\|^{2j})^2 = \left(\int_{\mathbb{R}} t\mu_h(\mathrm{d}t)\right)^2 \\ \leqslant \int_{\mathbb{R}} t^2 \mu_h(\mathrm{d}t) \int_{\mathbb{R}} t^0 \mu_h(\mathrm{d}t) = \|A^2h\|^{2j}\|h\|^{2j}, \\ \text{so } A \text{ is paranormal. The same for } A^*. \text{ By the Ando theorem } A \text{ is normal.} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$

(equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^n h\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n} h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(dt)\right)^2$
 $\leq \int_{\mathbb{R}} t^2\mu_h(dt) \int_{\mathbb{R}} t^0\mu_h(dt) = ||A^2h||^{2j}||h||^{2j}$,
so *A* is paranormal. The same for *A**. By the Ando theorem *A* is
normal.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{||A^nh||^{2j}\}_{n=0}^{\infty}$ and $\{||A^{*n}h||^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(dt)\right)^2$
 $\leq \int_{\mathbb{R}} t^2\mu_h(dt) \int_{\mathbb{R}} t^0\mu_h(dt) = ||A^2h||^{2j}||h||^{2j}$,
so *A* is paranormal. The same for *A**. By the Ando theorem *A* is
normal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^nh\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n}h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(dt)\right)^2$
 $\leq \int_{\mathbb{R}} t^2\mu_h(dt) \int_{\mathbb{R}} t^0\mu_h(dt) = ||A^2h||^{2j}||h||^{2j}$,
so *A* is paranormal. The same for *A*^{*}. By the Ando theorem *A* is
normal.

ヘロン 人間 とくほ とくほ とう

3

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^nh\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n}h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

 (\Rightarrow) Mainly by the spectral theorem. ъ

ヘロト 人間 ト ヘヨト ヘヨト

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^nh\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n}h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(dt)\right)^2$
 $\leq \int_{\mathbb{R}} t^2 \mu_h(dt) \int_{\mathbb{R}} t^0 \mu_h(dt) = ||A^2h||^{2j} ||h||^{2j}$,
so *A* is paranormal. The same for *A**. By the Ando theorem *A* is normal.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^nh\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n}h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(\mathrm{d}t)\right)^2$
 $\leq \int_{\mathbb{R}} t^2\mu_h(\mathrm{d}t)\int_{\mathbb{R}} t^0\mu_h(\mathrm{d}t) = ||A^2h||^{2j}||h||^{2j}$,
so *A* is paranormal. The same for *A**. By the Ando theorem *A* is
normal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A bounded operator A is normal if and only if $\mathcal{N}(A) = \mathcal{N}(A^*)$ and for some integers $j, k \ge 1$ (equivalently: for all integers $j, k \ge 1$) the sequences $\{\|A^nh\|^{2j}\}_{n=0}^{\infty}$ and $\{\|A^{*n}h\|^{2k}\}_{n=0}^{\infty}$ are Hamburger moment sequences for every $h \in \mathcal{H}$.

Proof.

(
$$\Rightarrow$$
) Mainly by the spectral theorem.
(\Leftarrow)
($||Ah||^{2j}$)² = $\left(\int_{\mathbb{R}} t\mu_h(\mathrm{d}t)\right)^2$
 $\leq \int_{\mathbb{R}} t^2\mu_h(\mathrm{d}t) \int_{\mathbb{R}} t^0\mu_h(\mathrm{d}t) = ||A^2h||^{2j}||h||^{2j}$,
so *A* is paranormal. The same for *A**. By the Ando theorem *A* is
normal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A compact operator A is normal if and only if for some integer $j \ge 1$ (equivalently: for all integers $j \ge 1$) the sequence $\{\|A^n h\|^{2j}\}_{n=0}^{\infty}$ is a Hamburger moment sequence for every $h \in \mathcal{H}$.

Open question

Fix integer $j \ge 2$ and assume that $\{\|A^n h\|^{2j}\}_{n=0}^{\infty}$ is a Hamburger moment sequence for every $h \in \mathcal{H}$. Does it follow that A is subnormal?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A compact operator A is normal if and only if for some integer $j \ge 1$ (equivalently: for all integers $j \ge 1$) the sequence $\{\|A^n h\|^{2j}\}_{n=0}^{\infty}$ is a Hamburger moment sequence for every $h \in \mathcal{H}$.

Open question

Fix integer $j \ge 2$ and assume that $\{\|A^n h\|^{2j}\}_{n=0}^{\infty}$ is a Hamburger moment sequence for every $h \in \mathcal{H}$. Does it follow that A is subnormal?

イロト 不得 とくほ とくほ とうほ

And Now for Something Completely Different

 $*54 \cdot 43. \quad \vdash :. \alpha, \beta \in 1 . \mathfrak{I} : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2$ Dem. $\vdash . *54 \cdot 26 . \mathfrak{I} \vdash :. \alpha = \iota' x . \beta = \iota' y . \mathfrak{I} : \alpha \cup \beta \in 2 . \equiv . x \neq y .$ $[*51 \cdot 231] \qquad \equiv . \iota' x \cap \iota' y = \Lambda .$ $[*13 \cdot 12] \qquad \equiv . \alpha \cap \beta = \Lambda \qquad (1)$ $\vdash . (1) . *11 \cdot 11 \cdot 35 . \mathfrak{I} \qquad \equiv . \alpha \cap \beta = \Lambda \qquad (2)$ $\vdash . (2) . *11 \cdot 54 . *52 \cdot 1 . \mathfrak{I} \vdash . \operatorname{Prop}$

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

・ロン ・四 と ・ ヨ と ・ ヨ と …

э.