On multiple solutions of generalized second order boundary value problem with Φ-Laplacian.

Boris Rudolf

September 9, 2011

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) . \tag{1}
\end{equation*}
$$

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{equation*}
$$

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{equation*}
$$

- $\Phi \in C^{1}(R)$, increasing, $\Phi(x) \rightarrow \pm \infty$ for $x \rightarrow \pm \infty$

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{equation*}
$$

- $\Phi \in C^{1}(R)$, increasing, $\Phi(x) \rightarrow \pm \infty$ for $x \rightarrow \pm \infty$
- $f: I \times R^{2} \rightarrow R$ is a continuous function, $\mathrm{I}=[0, \mathrm{~b}]$,

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{equation*}
$$

- $\Phi \in C^{1}(R)$, increasing, $\Phi(x) \rightarrow \pm \infty$ for $x \rightarrow \pm \infty$
- $f: I \times R^{2} \rightarrow R$ is a continuous function, $\mathrm{I}=[0, \mathrm{~b}]$,
- Existence of a classical solution

$$
x(t) \in D=\left\{x \in C^{1}(I), \Phi\left(x^{\prime}(t)\right) \in C^{1}(I)\right\}
$$

Introduction

Differential equation with Φ-Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{equation*}
$$

- $\Phi \in C^{1}(R)$, increasing, $\Phi(x) \rightarrow \pm \infty$ for $x \rightarrow \pm \infty$
- $f: I \times R^{2} \rightarrow R$ is a continuous function, $\mathrm{I}=[0, \mathrm{~b}]$,
- Existence of a classical solution $x(t) \in D=\left\{x \in C^{1}(I), \Phi\left(x^{\prime}(t)\right) \in C^{1}(I)\right\}$,
- Multiple solutions.

Lower and upper solution.

Lower solution $\alpha \in D^{0}$,

$$
\begin{gathered}
\lim _{t \rightarrow t_{i}-} \alpha^{\prime}(t) \leq \lim _{t \rightarrow t_{i}+} \alpha^{\prime}(t) \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{n}, \\
\left(\Phi\left(\alpha^{\prime}(t)\right)\right)^{\prime} \geq f\left(t, \alpha(t), \Phi\left(\alpha^{\prime}(t)\right)\right) \quad \text { for } t \in I^{0}, \\
\alpha^{\prime}(0) \geq 0, \quad \alpha(b) \leq \int_{0}^{b} \alpha(s) d g(s)-k \Phi\left(\alpha^{\prime}(b)\right) .
\end{gathered}
$$

Lower and upper solution.

Lower solution $\alpha \in D^{0}$,

$$
\begin{gathered}
\lim _{t \rightarrow t_{i}-} \alpha^{\prime}(t) \leq \lim _{t \rightarrow t_{i}+} \alpha^{\prime}(t) \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{n}, \\
\left(\Phi\left(\alpha^{\prime}(t)\right)\right)^{\prime} \geq f\left(t, \alpha(t), \Phi\left(\alpha^{\prime}(t)\right)\right) \quad \text { for } t \in I^{0}, \\
\alpha^{\prime}(0) \geq 0, \quad \alpha(b) \leq \int_{0}^{b} \alpha(s) d g(s)-k \Phi\left(\alpha^{\prime}(b)\right) .
\end{gathered}
$$

Upper solution $\beta \in D^{0}$,

$$
\begin{gathered}
\lim _{t \rightarrow t_{i}-} \beta^{\prime}(t) \geq \lim _{t \rightarrow t_{i}+} \beta^{\prime}(t) \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{n}, \\
\left(\Phi\left(\beta^{\prime}(t)\right)\right)^{\prime} \leq f\left(t, \beta(t), \Phi\left(\beta^{\prime}\right)\right), \quad \text { for } t \in I^{0}, \\
\beta^{\prime}(0) \leq 0, \quad \beta(b) \geq \int_{0}^{b} \beta(s) d g(s)-k \Phi\left(\beta^{\prime}(b)\right) .
\end{gathered}
$$

Lemma.
Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the boundary value problem (1), (2).

Lemma.

Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the boundary value problem (1), (2).
Then $\alpha(t) \leq x(t)$ implies $\alpha(t)<x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t)>x(t)$.

Lemma.

Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the boundary value problem (1), (2).
Then $\alpha(t) \leq x(t)$ implies $\alpha(t)<x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t)>x(t)$.

Lemma
Let $\forall r>r_{0}, \exists a_{r}>0$ and a function $h_{r} \in C\left(R_{0}^{+},\left[a_{r}, \infty\right]\right)$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\Phi^{-1}(s)}{h_{r}(s)} d s=\infty, \quad \int_{-\infty}^{0} \frac{\phi^{-1}(s)}{h_{r}(|s|)} d s=-\infty \tag{3}
\end{equation*}
$$

Lemma.

Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the boundary value problem (1), (2).
Then $\alpha(t) \leq x(t)$ implies $\alpha(t)<x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t)>x(t)$.

Lemma

Let $\forall r>r_{0}, \exists a_{r}>0$ and a function $h_{r} \in C\left(R_{0}^{+},\left[a_{r}, \infty\right]\right)$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\Phi^{-1}(s)}{h_{r}(s)} d s=\infty, \quad \int_{-\infty}^{0} \frac{\phi^{-1}(s)}{h_{r}(|s|)} d s=-\infty \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
|f(t, x, y)|<h_{r}(|y|) \tag{4}
\end{equation*}
$$

for $t \in I,|x|<r, y \in R$.

Lemma.

Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the boundary value problem (1), (2).
Then $\alpha(t) \leq x(t)$ implies $\alpha(t)<x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t)>x(t)$.

Lemma

Let $\forall r>r_{0}, \exists a_{r}>0$ and a function $h_{r} \in C\left(R_{0}^{+},\left[a_{r}, \infty\right]\right)$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\Phi^{-1}(s)}{h_{r}(s)} d s=\infty, \quad \int_{-\infty}^{0} \frac{\Phi^{-1}(s)}{h_{r}(|s|)} d s=-\infty \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
|f(t, x, y)|<h_{r}(|y|) \tag{4}
\end{equation*}
$$

for $t \in I,|x|<r, y \in R$.
Then $\forall r>r_{0}, \exists \rho_{r}>0$ such that for a solution x of (1), (2) $\|x\|<r$ implies $\left\|x^{\prime}\right\|<\rho_{r}$.

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
- $G(b)<1$.

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1), (2) such that $\|x\|<r$.

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1), (2) such that $\|x\|<r$. Idea of the proof: $\quad T: C^{1}([0, b]) \rightarrow C^{1}([0, b])$

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1), (2) such that $\|x\|<r$. Idea of the proof: $\quad T: C^{1}([0, b]) \rightarrow C^{1}([0, b])$

$$
\begin{aligned}
T_{x}(t) & =\frac{1}{G(b)-1}\left\{\int_{0}^{b} G(s) \Phi^{-1}\left(F_{x}(s)\right) d s+k\left(F_{x}(b)\right)\right\} \\
& -\int_{t}^{b} \Phi^{-1}\left(F_{x}(s)\right) d s
\end{aligned}
$$

Existence results.

Theorem.
Let $r>0$ be such that

- $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
- \exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1), (2) such that $\|x\|<r$. Idea of the proof: $\quad T: C^{1}([0, b]) \rightarrow C^{1}([0, b])$

$$
\begin{aligned}
T_{x}(t)= & \frac{1}{G(b)-1}\left\{\int_{0}^{b} G(s) \Phi^{-1}\left(F_{x}(s)\right) d s+k\left(F_{x}(b)\right)\right\} \\
- & \int_{t}^{b} \Phi^{-1}\left(F_{x}(s)\right) d s \\
& F_{x}(s)=\int_{0}^{s} f\left(\tau, x(\tau), \Phi\left(x^{\prime}(\tau)\right)\right) d \tau
\end{aligned}
$$

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.
Theorem.
Let

- $\alpha \not \leq \beta, \alpha(t), \beta(t)$ be strict lower and upper solutions of the problem (1), (2),

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.
Theorem.
Let

- $\alpha \not \leq \beta, \alpha(t), \beta(t)$ be strict lower and upper solutions of the problem (1), (2),
- $\forall r>0, \exists M_{r}>0$ such that $|f(t, x, y)| \leq M_{r}$ for each $t \in I$, $|x|<r, y \in R$,

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.
Theorem.
Let

- $\alpha \not \leq \beta, \alpha(t), \beta(t)$ be strict lower and upper solutions of the problem (1), (2),
- $\forall r>0, \exists M_{r}>0$ such that $|f(t, x, y)| \leq M_{r}$ for each $t \in I$, $|x|<r, y \in R$,
- $G(b)<1$.

Theorem.
Let

- $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
- $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq \beta(t), y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.
Theorem.
Let

- $\alpha \not \leq \beta, \alpha(t), \beta(t)$ be strict lower and upper solutions of the problem (1), (2),
- $\forall r>0, \exists M_{r}>0$ such that $|f(t, x, y)| \leq M_{r}$ for each $t \in I$, $|x|<r, y \in R$,
- $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\left.\exists t_{a} \in I, \alpha\left(t_{a}\right)>x\left(t_{a}\right), \exists t_{b} \in I, x\left(t_{b}\right)>\beta\left(t_{b}\right)\right\}$.

Multiplicity results.

Lemma.
Let α be a strict lower solution of the problem (1), (2). Set

$$
f_{\alpha}(t, x, y)=\left\{\begin{array}{l}
f(t, x, y) \quad x(t)>\alpha(t) \\
f(t, \alpha(t), y) \quad x(t) \leq \alpha(t)
\end{array}\right.
$$

Multiplicity results.

Lemma.
Let α be a strict lower solution of the problem (1), (2).
Set

$$
f_{\alpha}(t, x, y)= \begin{cases}f(t, x, y) & x(t)>\alpha(t) \\ f(t, \alpha(t), y) \quad x(t) \leq \alpha(t)\end{cases}
$$

Then each solution $x(t)$ of

$$
\begin{aligned}
& \left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{\alpha}\left(t, x, \Phi\left(x^{\prime}\right)\right) \\
& x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right)
\end{aligned}
$$

is a solution of (1), (2).

Lemma.
Let β be a strict upper solution of the problem (1), (2).
Set

$$
f_{\beta}(t, x, y)=\left\{\begin{array}{l}
f(t, x, y) \quad x(t)<\beta(t) \\
f(t, \beta(t), y) \quad x(t) \geq \beta(t)
\end{array}\right.
$$

Then each solution $x(t)$ of

$$
\begin{aligned}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime} & =f_{\beta}\left(t, x, \Phi\left(x^{\prime}\right)\right) \\
x^{\prime}(0)=0, \quad x(b) & =\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right),
\end{aligned}
$$

is a solution of (1), (2).

Theorem.
Let

- $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),

Theorem.
Let

- $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),
- there exists a constant $M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, \alpha(t)<x, y \in R$,

Theorem.
Let

- $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),
- there exists a constant $M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, \alpha(t)<x, y \in R$,
- $G(b)<1$.

Theorem.
Let

- $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),
- there exists a constant $M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, \alpha(t)<x, y \in R$,
- $G(b)<1$.

Then the problem (1), (2) has at least two solutions.

Theorem.
Let

- $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),
- there exists a constant $M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, \alpha(t)<x, y \in R$,
- $G(b)<1$.

Then the problem (1), (2) has at least two solutions.

Theorem.
Let

- $\alpha<\beta, \beta_{1}<\beta, \alpha \not \leq \beta_{1}$, where α is a strict lower solution and β, β_{1} are strict upper solutions of the problem (1), (2),
- there exists a constant $M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, x<\beta(t), y \in R$,
- $G(b)<1$.

Then the problem (1), (2) has at least two solutions.

Examples

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f(t, x)=0, \\
& x^{\prime}(0)=0, \quad x(1)=0 .
\end{aligned}
$$

Examples

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f(t, x)=0 \\
& x^{\prime}(0)=0, \quad x(1)=0
\end{aligned}
$$

$$
\varphi_{p}(x)=|x|^{p-1} \operatorname{sgn}(x), p>1
$$

Examples

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f(t, x)=0 \\
& x^{\prime}(0)=0, \quad x(1)=0
\end{aligned}
$$

$\varphi_{p}(x)=|x|^{p-1} \operatorname{sgn}(x), p>1$.
Assume

$$
0 \leq f(t, x) \leq\left(a+b x^{\gamma}\right)
$$

with

$$
a>0, b>0,0 \leq \gamma<p-1
$$

Examples

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f(t, x)=0, \\
& x^{\prime}(0)=0, \quad x(1)=0 .
\end{aligned}
$$

$\varphi_{p}(x)=|x|^{p-1} \operatorname{sgn}(x), p>1$.
Assume

$$
0 \leq f(t, x) \leq\left(a+b x^{\gamma}\right),
$$

with

$$
a>0, b>0,0 \leq \gamma<p-1 .
$$

Then

$$
\beta(t)=\frac{p-1}{p} M^{\frac{1}{p-1}}\left(1-t^{\frac{p}{p-1}}\right)
$$

with $M>0$ a solution of $a+b\left(\frac{p-1}{p} M\right)^{\frac{\gamma}{p-1}} \leq M$ is an upper solution

Examples

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f(t, x)=0, \\
& x^{\prime}(0)=0, \quad x(1)=0 .
\end{aligned}
$$

$\varphi_{p}(x)=|x|^{p-1} \operatorname{sgn}(x), p>1$.
Assume

$$
\begin{gathered}
0 \leq f(t, x) \leq\left(a+b x^{\gamma}\right), \\
a>0, b>0,0 \leq \gamma<p-1 .
\end{gathered}
$$

with
Then

$$
\beta(t)=\frac{p-1}{p} M^{\frac{1}{p-1}}\left(1-t^{\frac{p}{p-1}}\right)
$$

with $M>0$ a solution of $a+b\left(\frac{p-1}{p} M\right)^{\frac{\gamma}{p-1}} \leq M$ is an upper solution i. e. there exists a nonnegative nonincreasing solution.

Example.

$$
\begin{aligned}
& \left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f\left(t, x, x^{\prime}\right)=0, \\
& x^{\prime}(0)=0, \quad x(1)=\frac{1}{2} x\left(\frac{1}{2}\right) .
\end{aligned}
$$

Example.

$$
\begin{gathered}
\left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f\left(t, x, x^{\prime}\right)=0 \\
x^{\prime}(0)=0, \quad x(1)=\frac{1}{2} x\left(\frac{1}{2}\right)
\end{gathered}
$$

Assume $0 \leq f(t, x, y) \leq M, \quad$ for $t \in I, x \geq 0, y \leq 0$.

Example.

$$
\begin{gathered}
\left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f\left(t, x, x^{\prime}\right)=0 \\
x^{\prime}(0)=0, \quad x(1)=\frac{1}{2} x\left(\frac{1}{2}\right)
\end{gathered}
$$

Assume $0 \leq f(t, x, y) \leq M, \quad$ for $t \in I, x \geq 0, y \leq 0$. Then

$$
\beta(t)=\frac{1}{q}(a M)^{\frac{q}{p}}\left(a^{q}-t^{q}\right)
$$

where $a=\left(2-2^{-q}\right)^{\frac{1}{q}}$, is an upper solution

Example.

$$
\begin{gathered}
\left(\varphi_{p}\left(x^{\prime}\right)\right)^{\prime}+f\left(t, x, x^{\prime}\right)=0 \\
x^{\prime}(0)=0, \quad x(1)=\frac{1}{2} x\left(\frac{1}{2}\right)
\end{gathered}
$$

Assume $0 \leq f(t, x, y) \leq M, \quad$ for $t \in I, x \geq 0, y \leq 0$. Then

$$
\beta(t)=\frac{1}{q}(a M)^{\frac{q}{p}}\left(a^{q}-t^{q}\right)
$$

where $a=\left(2-2^{-q}\right)^{\frac{1}{q}}$, is an upper solution i. e. there exists a nonnegative nonincreasing solution.

Example.

$$
\begin{gathered}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{1}(t, x)+f_{2}\left(x^{\prime}\right)+h(t) \\
x(0)=x(b), \quad x^{\prime}(0)=x^{\prime}(b) .
\end{gathered}
$$

Example.

$$
\begin{aligned}
& \left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{1}(t, x)+f_{2}\left(x^{\prime}\right)+h(t) \\
& x(0)=x(b), \quad x^{\prime}(0)=x^{\prime}(b) .
\end{aligned}
$$

- $f_{1}(t, x)$ is continuous, f_{2} is continuous and bounded,

Example.

$$
\begin{aligned}
& \left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{1}(t, x)+f_{2}\left(x^{\prime}\right)+h(t) \\
& x(0)=x(b), \quad x^{\prime}(0)=x^{\prime}(b) .
\end{aligned}
$$

- $f_{1}(t, x)$ is continuous, f_{2} is continuous and bounded,
- $\lim _{x \rightarrow-\infty} f_{1}(t, x)=\infty, \quad \lim _{x \rightarrow \infty} f_{1}(t, x)=-\infty$, uniformly for $t \in I$,

Example.

$$
\begin{aligned}
& \left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{1}(t, x)+f_{2}\left(x^{\prime}\right)+h(t) \\
& x(0)=x(b), \quad x^{\prime}(0)=x^{\prime}(b)
\end{aligned}
$$

- $f_{1}(t, x)$ is continuous, f_{2} is continuous and bounded,
- $\lim _{x \rightarrow-\infty} f_{1}(t, x)=\infty, \quad \lim _{x \rightarrow \infty} f_{1}(t, x)=-\infty$, uniformly for $t \in I$,
- \exists constants $x_{1}, x_{2}, x_{1}<x_{2}$, such that $f_{1}\left(t, x_{1}\right)<f_{1}\left(t, x_{2}\right)$ for each $t \in I$.

Then

- $f_{1}\left(t, x_{1}\right)<h(t)<f_{1}\left(t, x_{2}\right) \Rightarrow$ at least three solutions,

Then

- $f_{1}\left(t, x_{1}\right)<h(t)<f_{1}\left(t, x_{2}\right) \Rightarrow$ at least three solutions,
- $f_{1}\left(t, x_{1}\right) \leq h(t) \leq f_{1}\left(t, x_{2}\right) \Rightarrow$ at least two solutions,

Then

- $f_{1}\left(t, x_{1}\right)<h(t)<f_{1}\left(t, x_{2}\right) \Rightarrow$ at least three solutions,
- $f_{1}\left(t, x_{1}\right) \leq h(t) \leq f_{1}\left(t, x_{2}\right) \Rightarrow$ at least two solutions,
- for each $h(t) \in C(I) \Rightarrow$ exists a solution.

Thank you for your attention.

