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Introduction

Differential equation with Φ–Laplacian

(Φ(x ′))′ = f (t, x ,Φ(x ′)). (1)

Generalized boundary conditions

x ′(0) = 0, x(b) =

∫ b

0
x(s)dg(s)− kΦ(x ′(b)). (2)

I Φ ∈ C 1(R), increasing, Φ(x)→ ±∞ for x → ±∞
I f : I × R2 → R is a continuous function, I=[0,b],

I Existence of a classical solution
x(t) ∈ D = {x ∈ C 1(I ), Φ(x ′(t)) ∈ C 1(I )},

I Multiple solutions.
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Lower and upper solution.

Lower solution α ∈ D0,

lim
t→ti−

α′(t) ≤ lim
t→ti+

α′(t) for i=1,. . . ,n,

(Φ(α′(t)))′ ≥ f (t, α(t),Φ(α′(t))) for t ∈ I 0,

α′(0) ≥ 0, α(b) ≤
∫ b

0
α(s)dg(s)− kΦ(α′(b)).

Upper solution β ∈ D0,

lim
t→ti−

β′(t) ≥ lim
t→ti+

β′(t) for i=1,. . . ,n,

(Φ(β′(t)))′ ≤ f (t, β(t),Φ(β′)), for t ∈ I 0,

β′(0) ≤ 0, β(b) ≥
∫ b

0
β(s)dg(s)− kΦ(β′(b)).
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Lemma.
Let α, β be a strict lower and upper solution and x(t) be a
solution of the boundary value problem (1), (2).

Then α(t) ≤ x(t) implies α(t) < x(t) and β(t) ≥ x(t) implies
β(t) > x(t).

Lemma
Let ∀r > r0, ∃ar > 0 and a function hr ∈ C (R+

0 , [ar ,∞]) satisfying∫ ∞
0

Φ−1(s)

hr (s)
ds =∞,

∫ 0

−∞

Φ−1(s)

hr (|s|)
ds = −∞ (3)

such that
|f (t, x , y)| < hr (|y |) (4)

for t ∈ I , |x | < r , y ∈ R.
Then ∀r > r0 , ∃ρr > 0 such that for a solution x of (1), (2)
||x || < r implies ||x ′|| < ρr .
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Existence results.

Theorem.
Let r > 0 be such that

I f (t, r , 0) > 0 and f (t,−r , 0) < 0 on I ,

I ∃ a function hr ∈ C (R0, [ar ,∞]) with ar > 0 satisfying (3)
such that (4) holds for t ∈ I , |x | < r , y ∈ R,

I G (b) < 1.

Then there exists a solution x of (1), (2) such that ||x || < r .

Idea of the proof: T : C 1([0, b])→ C 1([0, b])

Tx(t) =
1

G (b)− 1

{∫ b

0
G (s)Φ−1(Fx(s)) ds + k(Fx(b))

}
−
∫ b

t
Φ−1(Fx(s)) ds.

Fx(s) =

∫ s

0
f (τ, x(τ),Φ(x ′(τ))) dτ

.
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Theorem.
Let

I α ≤ β, α(t), β(t) be a lower and upper solution of (1), (2),

I ∃ h ∈ C (R+
0 , [a,∞]) with a > 0 satisfying (3) such that (4)

holds for t ∈ I , α(t) ≤ x ≤ β(t), y ∈ R,

I G (b) < 1.

Then there exists a solution x of (1),(2) such that
α(t) ≤ x(t) ≤ β(t).

Theorem.
Let

I α � β, α(t), β(t) be strict lower and upper solutions of the
problem (1), (2),

I ∀r > 0, ∃Mr > 0 such that |f (t, x , y)| ≤ Mr for each t ∈ I ,
|x | < r , y ∈ R,

I G (b) < 1.

Then there exists a solution x of (1),(2) such that
∃ta ∈ I , α(ta) > x(ta), ∃tb ∈ I , x(tb) > β(tb)}.
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Example.

(ϕp(x ′))′ + f (t, x) = 0,

x ′(0) = 0, x(1) = 0.

ϕp(x) = |x |p−1sgn(x), p > 1.
Assume 0 ≤ f (t, x) ≤ (a + bxγ),
with a > 0, b > 0, 0 ≤ γ < p − 1.

Then

β(t) =
p − 1

p
M

1
p−1 (1− t

p
p−1 )

with M > 0 a solution of a + b(p−1p M)
γ

p−1 ≤ M
is an upper solution i. e.
there exists a nonnegative nonincreasing solution.
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(Φ(x ′))′ = f1(t, x) + f2(x ′) + h(t)

x(0) = x(b), x ′(0) = x ′(b).

I f1(t, x) is continuous, f2 is continuous and bounded,

I limx→−∞ f1(t, x) =∞, limx→∞ f1(t, x) = −∞, uniformly
for t ∈ I ,

I ∃ constants x1, x2, x1 < x2, such that f1(t, x1) < f1(t, x2) for
each t ∈ I .
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Then

I f1(t, x1) < h(t) < f1(t, x2) ⇒ at least three solutions,

I f1(t, x1) ≤ h(t) ≤ f1(t, x2) ⇒ at least two solutions,

I for each h(t) ∈ C (I ) ⇒ exists a solution.
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Thank you for your attention.
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