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Differential equation with ®—Laplacian

(®(x) = f(t,x, ®(x)).

Generalized boundary conditions

b
K(0)=0,  x(b)= /0 x(5)dg(s) — k& (x'(b)).

v

® € CY(R), increasing, ®(x) — +oo for x — +o0

v

f:1x R?> = R is a continuous function, 1=[0,b],

» Existence of a classical solution
x(t) € D = {x € Ci(I), &(X'(t)) € C}(1)},

» Multiple solutions.



Lower and upper solution.

Lower solution o € D9,
lim o/(t) < lim o/(t) for i=1,...,n,
t—ti— t—ti+

(O (1)) > f(t,at), d((1))) for t € 1°,

b
2(0)>0, a(b)< /0 o(s)da(s) — k(o (b)).



Lower and upper solution.

Lower solution a € D,
tm,]_ a(t) < tiT+ o(t)  fori=1,...,n,
(O(@(B)) = F(t,a(), O(/(1))  for t e I°,
>0 o)< | " o(s)da(5) — ko(o/(5))

Upper solution 8 € DO,
. / > . i -
tﬂ}rg_ﬂ (t) > tﬂ)T—FIB (t) for i=1,...,n,

(O(B(1)) < F(t,8(t), 8(8)),  fortel,
b
gO)<0, Bb)> /0 B(s)dg(s) — k(5 (b)).
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Lemma.

Let o, 8 be a strict lower and upper solution and x(t) be a
solution of the boundary value problem (1), (2).

Then a(t) < x(t) implies a(t) < x(t) and B(t) > x(t) implies

B(t) > x(t).

Lemma
Let Vr > ry, 3a, > 0 and a function h, € C(Ry ,[a,,c]) satisfying

oo¢—1(s) o 0 (D_l(s) .
L R o= | e - G)

such that

[£(t, %, ) < he(ly]) (4)

fortel, |x|<r, yeR.
Then ¥r > ry , 3p, > 0 such that for a solution x of (1), (2)
[Ix|| < r implies ||X'|| < pr.
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Let av be a strict lower solution of the problem (1), (2).

Set
)t xy) x(t) > aft)
fa(t,x,y) = {f(t,a(t),y) x(t) < aft).
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o
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X(0)=0, x(1)= %()
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Assume 0 < f(t,x,y) <M, fortel, x>0,y <O0.
Then
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1 o
where a = (2 — 279)4, is an upper solution i. e.
there exists a nonnegative nonincreasing solution.
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(®(x))" = A(t,x) + £(X) + h(t)
x(0) = x(b), x'(0) = X'(b).

» fi(t, x) is continuous, f; is continuous and bounded,
> limy oo fi(t, x) =00, limy_o0 fi(t, x) = —00, uniformly
fort e l,

» 3 constants x1, xp, x1 < X2, such that fi(t,x1) < fi(t,x2) for
each t € I.
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Then
» fA(t,x1) < h(t) <
» fi(t,x1) < h(t) < fi(t, x2) = at least two solutions,
» for each h(t) €

fi(t,x2) = at least three solutions,

C(/) = exists a solution.



Thank you for your attention.
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