One-dimensional and multidimensional spectral order

Artur Płaneta

University of Agriculture in Krakow, Poland
This presentation is based on the joint work with J. Stochel September 5-10, 2011, Nemecká
(1) Spectral order \preccurlyeq

- Introduction
- \preccurlyeq and \leqslant-comparison
(2) Multidimensional spectral order
- General case
- Monomials
- Monomials and positive operators

Notation

- \mathcal{H} - complex Hilbert space,

Notation

- \mathcal{H} - complex Hilbert space,
- By an operator in a complex Hilbert space \mathcal{H} we understand a linear mapping $A: \mathcal{H} \supseteq \mathscr{D}(A) \rightarrow \mathcal{H}$ defined on a linear subspace $\mathscr{D}(A)$ of \mathcal{H}, called the domain of A.

Notation

- \mathcal{H} - complex Hilbert space,
- By an operator in a complex Hilbert space \mathcal{H} we understand a linear mapping $A: \mathcal{H} \supseteq \mathscr{D}(A) \rightarrow \mathcal{H}$ defined on a linear subspace $\mathscr{D}(A)$ of \mathcal{H}, called the domain of A.
- If the operator A is closable, we denote by \bar{A} its closure.

Definitions

- Denote by $\boldsymbol{B}(\mathcal{H})$ the C^{*}-algebra of all bounded operators A in \mathcal{H} with $\mathscr{D}(A)=\mathcal{H}$. As usual, $I=I_{\mathcal{H}}$ stands for the identity operator on \mathcal{H}.

Definitions

- Denote by $\boldsymbol{B}(\mathcal{H})$ the C^{*}-algebra of all bounded operators A in \mathcal{H} with $\mathscr{D}(A)=\mathcal{H}$. As usual, $I=I_{\mathcal{H}}$ stands for the identity operator on \mathcal{H}.
- $\boldsymbol{B}_{s}(\mathcal{H})=\left\{\boldsymbol{A} \in \boldsymbol{B}(\mathcal{H}): A=A^{*}\right\}$

Definitions

- Denote by $\boldsymbol{B}(\mathcal{H})$ the C^{*}-algebra of all bounded operators A in \mathcal{H} with $\mathscr{D}(A)=\mathcal{H}$. As usual, $I=I_{\mathcal{H}}$ stands for the identity operator on \mathcal{H}.
- $\boldsymbol{B}_{s}(\mathcal{H})=\left\{\boldsymbol{A} \in \boldsymbol{B}(\mathcal{H}): \boldsymbol{A}=\boldsymbol{A}^{*}\right\}$
- Given two selfadjoint operators $A, B \in B(\mathcal{H})$, we write $A \leqslant B$ whenever $\langle A h, h\rangle \leqslant\langle B h, h\rangle$ for all $h \in \mathcal{H}$.

Definitions

- A densely defined operator A in \mathcal{H} is said to be selfadjoint if $A=A^{*}$ and positive if $\langle A h, h\rangle \geqslant 0$ for all $h \in \mathscr{D}(A)$.

Definitions

- A densely defined operator A in \mathcal{H} is said to be selfadjoint if $A=A^{*}$ and positive if $\langle A h, h\rangle \geqslant 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}\left(B^{1 / 2}\right) \subseteq \mathscr{D}\left(A^{1 / 2}\right)$ and $\left\|A^{1 / 2} h\right\| \leqslant\left\|B^{1 / 2} h\right\|$ for all $h \in \mathscr{D}\left(B^{1 / 2}\right)$, then we write $A \leqslant B$.

Definitions

- A densely defined operator A in \mathcal{H} is said to be selfadjoint if $A=A^{*}$ and positive if $\langle A h, h\rangle \geqslant 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}\left(B^{1 / 2}\right) \subseteq \mathscr{D}\left(A^{1 / 2}\right)$ and $\left\|A^{1 / 2} h\right\| \leqslant\left\|B^{1 / 2} h\right\|$ for all $h \in \mathscr{D}\left(B^{1 / 2}\right)$, then we write $A \leqslant B$.
- The last definition of \leqslant is easily seen to be consistent with that for bounded operators.

Remark

In general inequality $0 \leqslant A \leqslant B$, where $A, B \in B(\mathcal{H})$, may not imply $A^{n} \leqslant B^{n}$, where $n \in \mathbb{N}$.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H}. Then the following conditions are equivalent:
(i) $A^{n} \leqslant B^{n}$ for all $n \in \mathbb{N}$,
(ii) $\left\{n \in \mathbb{N}: A^{n} \leqslant B^{n}\right\}$ is infinite,

Remark

In general inequality $0 \leqslant A \leqslant B$, where $A, B \in B(\mathcal{H})$, may not imply $A^{n} \leqslant B^{n}$, where $n \in \mathbb{N}$.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H}. Then the following conditions are equivalent:
(i) $A^{n} \leqslant B^{n}$ for all $n \in \mathbb{N}$,
(ii) $\left\{n \in \mathbb{N}: A^{n} \leqslant B^{n}\right\}$ is infinite,
(iii) $A \preccurlyeq B$.

Let us consider two-dimensional Hilbert space $\mathcal{H}=\mathbb{C}^{2}$. Let A and B_{θ} be the matrices given by

$$
A=\left[\begin{array}{ll}
1 & 1 \tag{1}\\
1 & 1
\end{array}\right] \text { and } B_{\theta}=\left[\begin{array}{ll}
2 & 1 \\
1 & \theta
\end{array}\right] \text { for } \theta \in[1, \infty)
$$

Clearly, $A \geqslant 0$ and $B_{\theta} \geqslant 0$.

Proposition

Let A and B_{θ} be as in (1). Then for every positive integer k there exists $\theta_{k} \in(2, \infty)$ such that for all $\theta \in\left[\theta_{k}, \infty\right)$,
(i) $A^{n} \leqslant B_{\theta}^{n}$ for all $n=0, \ldots, k$,
(ii) $A \npreceq B_{\theta}$.

The definition of spectral order

- Let $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$ with spectral measure E_{A} and E_{B}, respectively. We write $A \preccurlyeq B$ if $E_{B}((-\infty, x]) \leqslant E_{A}((-\infty, x])$ for all $x \in \mathbb{R}$.

The definition of spectral order

- Let $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$ with spectral measure E_{A} and E_{B}, respectively. We write $A \preccurlyeq B$ if $E_{B}((-\infty, x]) \leqslant E_{A}((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation \preccurlyeq is a partial order in the set of all selfadjoint operators in \mathcal{H}.

The definition of spectral order

- Let $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$ with spectral measure E_{A} and E_{B}, respectively. We write $A \preccurlyeq B$ if $E_{B}((-\infty, x]) \leqslant E_{A}((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation \preccurlyeq is a partial order in the set of all selfadjoint operators in \mathcal{H}.
- This definition was introduced in 1971 by Olson.

Lattices

- Kadison (1951): $\left(\boldsymbol{B}_{s}(\mathcal{H}), \leqslant\right)$ is an anti-lattice, i.e., for any $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$, the supremum of the set $\{A, B\}$ exists if and only if A, B are comparable (either $A \leqslant B$ or $B \leqslant A$).

Lattices

- Kadison (1951): $\left(\boldsymbol{B}_{s}(\mathcal{H}), \leqslant\right)$ is an anti-lattice, i.e., for any $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$, the supremum of the set $\{A, B\}$ exists if and only if A, B are comparable (either $A \leqslant B$ or $B \leqslant A$).
- Sherman (1951): If the set of all selfadjoint elements of a \mathcal{C}^{*}-algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.

Lattices

- Kadison (1951): $\left(\boldsymbol{B}_{s}(\mathcal{H}), \leqslant\right)$ is an anti-lattice, i.e., for any $A, B \in \boldsymbol{B}_{s}(\mathcal{H})$, the supremum of the set $\{A, B\}$ exists if and only if A, B are comparable (either $A \leqslant B$ or $B \leqslant A$).
- Sherman (1951): If the set of all selfadjoint elements of a \mathcal{C}^{*}-algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.
- Olson (1971): If \mathcal{S} is the set of all selfadjoint elements of a von Neumann algebra \mathscr{V} in $\boldsymbol{B}(\mathcal{H})$ then, $(\mathcal{S}, \preccurlyeq)$ is a conditionally complete lattice.

The definition of spectral order for unbounded operators
Given two selfadjoint operators A and B in \mathcal{H} with spectral measure E_{A} and E_{B}, respectively, we write $A \preccurlyeq B$ if $E_{B}((-\infty, x]) \leqslant E_{A}((-\infty, x])$ for all $x \in \mathbb{R}$.

In the case of unbounded operators closed supports of E_{A} and E_{B} are not compact.

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle A h, h\rangle \leqslant\langle B h, h\rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B)=\{0\} \neq \mathcal{H}$.

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle A h, h\rangle \leqslant\langle B h, h\rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B)=\{0\} \neq \mathcal{H}$.

Theorem (M. P. Olson, M. Fujii, I. Kasahara, A. P., J. Stochel)

If A and B are selfadjoint operators in \mathcal{H}, then the following conditions are equivalent:
(i) $A \preccurlyeq B$,
(ii) $f(A) \leqslant f(B)$ for each bounded continuous monotonically increasing function $f: \mathbb{R} \rightarrow[0, \infty)$,
(iii) $f(A) \leqslant f(B)$ for each bounded monotonically increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Definitions

- $\mathscr{D}^{\infty}(A)=\bigcap_{n=1}^{\infty} \mathscr{D}\left(A^{n}\right)$.

Definitions

- $\mathscr{D}^{\infty}(A)=\bigcap_{n=1}^{\infty} \mathscr{D}\left(A^{n}\right)$.
- An element of

$$
\mathscr{B}(A)=\bigcup_{a>0}\left\{h \in \mathscr{D}^{\infty}(A): \exists_{c>0} \forall_{n \geqslant 0}\left\|A^{n} h\right\| \leqslant c a^{n}\right\}
$$

is called a bounded vector of A.

Theorem

If A and B are positive selfadjoint operators in \mathcal{H}, then the following conditions are equivalent:
(i) $A \preccurlyeq B$,
(ii) $\mathscr{D}^{\infty}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A, B}(h)$ is unbounded for all $h \in \mathscr{D}^{\infty}(B)$,
(iii) $\mathscr{B}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A, B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,
(iv) $\mathscr{B}(B) \subseteq \mathscr{B}(A)$ and the set $\mathscr{I}_{A, B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,
where $\mathscr{I}_{A, B}(h):=\left\{s \in[0, \infty):\left\langle A^{s} h, h\right\rangle \leqslant\left\langle B^{s} h, h\right\rangle\right\}$ for $h \in \mathscr{D}^{\infty}(A) \cap \mathscr{D}^{\infty}(B)$.

Recall that due to Stone's theorem the infinitesimal generator of a C_{0}-semigroup of bounded selfadjoint operators on \mathcal{H} is always selfadjoint.

Theorem

Let $\left\{T_{j}(t)\right\}_{t \geqslant 0} \subseteq \boldsymbol{B}(\mathcal{H})$ be a C_{0}-semigroup of selfadjoint operators and A_{j} be its infinitesimal generator, $j=1,2$. Then the following conditions are equivalent:
(i) $A_{1} \preccurlyeq A_{2}$,
(ii) $T_{1}(t) \preccurlyeq T_{2}(t)$ for some $t>0$,
(iii) $T_{1}(t) \preccurlyeq T_{2}(t)$ for every $t>0$,
(iv) $T_{1}(t) \leqslant T_{2}(t)$ for some $t>0$ and
$E_{A}((-\infty, x]) E_{B}((-\infty, x])=E_{B}((-\infty, x]) E_{A}((-\infty, x])$ for every $x \in \mathbb{R}$,
(v) $T_{1}(n t) \leqslant T_{2}(n t)$ for some $t>0$ and for infinitely many $n \in \mathbb{N}$.

- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_{A}(\sigma) E_{B}(\tau)=E_{B}(\tau) E_{A}(\sigma)$ for all Borel subsets σ, τ of \mathbb{R}.
- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_{A}(\sigma) E_{B}(\tau)=E_{B}(\tau) E_{A}(\sigma)$ for all Borel subsets σ, τ of \mathbb{R}.
- $E_{\text {A }}$-joint spectral measure of $\mathbf{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$,

Definition

Let $\mathbf{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ be a κ-tuples of commuting selfadjoint operators in \mathcal{H}. We write $\mathbf{A} \preccurlyeq \mathbf{B}$ if $E_{\mathbf{B}}((-\infty, x]) \leqslant E_{\mathbf{A}}((-\infty, x])$ for every $x=\left(x_{1}, \ldots, x_{\kappa}\right) \in \mathbb{R}^{\kappa}$, where $(-\infty, x]:=\left(-\infty, x_{1}\right] \times \ldots \times\left(-\infty, x_{\kappa}\right]$.

Notation and definitions

- $S\left(\mathbb{R}^{\kappa}, E\right)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \rightarrow \overline{\mathbb{R}}$,

Notation and definitions

- $S\left(\mathbb{R}^{\kappa}, E\right)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \rightarrow \overline{\mathbb{R}}$,
- $|\alpha|:=\alpha_{1}+\ldots+\alpha_{\kappa}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\kappa}\right) \in[0, \infty)^{\kappa}$,

Notation and definitions

- $S\left(\mathbb{R}^{\kappa}, E\right)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \rightarrow \overline{\mathbb{R}}$,
- $|\alpha|:=\alpha_{1}+\ldots+\alpha_{\kappa}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\kappa}\right) \in[0, \infty)^{\kappa}$,
- $x^{\alpha}:=x_{1}^{\alpha_{1}} \ldots x_{\kappa}^{\alpha_{\kappa}}$ for $x=\left(x_{1}, \ldots, x_{\kappa}\right)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\kappa}\right)$.

Theorem

Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ be κ-tuples of commuting selfadjoint operators in \mathcal{H} such, that $\mathbf{A} \preccurlyeq \mathbf{B}$. If $\varphi \in S\left(\mathbb{R}^{\kappa}, E_{\boldsymbol{A}}\right) \cap S\left(\mathbb{R}^{\kappa}, E_{\boldsymbol{B}}\right)$ is separately monotonically increasing Borel function, then $\varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B})$. In particular $\varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B})$ for every separately monotonically increasing Borel function $\varphi: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$.

Remark

Suppose that $\operatorname{dim} \mathcal{H} \geqslant 1$. Then each Borel function $\varphi: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ satisfying condition

$$
\begin{equation*}
\mathbf{A} \preccurlyeq \mathbf{B} \Longrightarrow \varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B}) \tag{2}
\end{equation*}
$$

for every $\mathbf{A}, \mathbf{B} \kappa$-tuples of commuting selfadjoint operators, has to be separately monotonically increasing.

Corollary

Let \mathbf{A} and \mathbf{B} be κ-tuples of commuting selfadjoint operators. Then the following conditions are equivalent:
(i) $\mathbf{A} \preccurlyeq \mathbf{B}$,
(ii) $\varphi(\mathbf{A}) \leqslant \varphi(\mathbf{B})$ for every separately monotonically increasing bounded continuous function $\varphi: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$,
(iii) $\varphi(\mathbf{A}) \leqslant \varphi(\mathbf{B})$ for every separately monotonically increasing bounded Borel function $\varphi: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$.

Remark

Olson proved that the spectral order is not a vector order. In particular the implication $A \preccurlyeq B \Longrightarrow A+C \preccurlyeq B+C$ does not hold for some $A, B, C \in \boldsymbol{B}_{s}(\mathcal{H})$. However spectral order has still some traces of vector order properties.

Remark

Olson proved that the spectral order is not a vector order. In particular the implication $A \preccurlyeq B \Longrightarrow A+C \preccurlyeq B+C$ does not hold for some $A, B, C \in \boldsymbol{B}_{s}(\mathcal{H})$. However spectral order has still some traces of vector order properties.

Corollary

Let $\left(A_{1}, A_{2}\right)$ and $\left(B_{1}, B_{2}\right)$ be pairs of commuting selfadjoint operators in \mathcal{H}. Assume that $A_{1} \preccurlyeq B_{1}$ and $A_{2} \preccurlyeq B_{2}$. Then

$$
\overline{A_{1}+A_{2}} \preccurlyeq \overline{B_{1}+B_{2}} .
$$

Let

$$
X^{\alpha}(\mathbf{A})=\int_{\mathbb{R}^{\kappa}} x^{\alpha} d E_{\mathbf{A}}(x)=\overline{A_{1}^{\alpha_{1}} \ldots A_{\kappa}^{\alpha_{\kappa}}}
$$

for $\alpha \in \mathbb{N}^{\kappa}$.
What are the connections between the domains of operators $X^{\alpha}(\mathbf{A})$ and $X^{\alpha}(\mathbf{B})$, if $\mathbf{A} \preccurlyeq \mathbf{B}$?

Let

$$
\mathbf{C}_{\epsilon}:=\left(C_{1}^{\epsilon_{1}}, \ldots, C_{\kappa}^{\epsilon_{\kappa}}\right)
$$

for $\mathbf{C}=\left(C_{1}, \ldots, C_{\kappa}\right)-\kappa$-tuples of commuting selfadjoint operators in \mathcal{H} and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{\kappa}\right) \in\{-,+\}^{\kappa}$, where $C^{ \pm}:=\int_{\mathbb{R}} x^{ \pm} d E_{C}(x)$.

Theorem

Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ be a κ-tuples of commuting selfadjoint operators such that $\boldsymbol{A} \preccurlyeq \boldsymbol{B}$ and $\alpha \in \mathbb{N}^{\kappa}$. If

$$
X^{\alpha}\left(\boldsymbol{A}_{\epsilon}\right) \in \boldsymbol{B}(\mathcal{H}), \quad \epsilon \in\{-,+\}^{\kappa} \backslash\{(+, \ldots,+)\}
$$

then

$$
\begin{equation*}
\mathscr{D}\left(X^{\alpha}(\boldsymbol{B})\right) \subset \mathscr{D}\left(X^{\alpha}(\boldsymbol{A})\right) . \tag{3}
\end{equation*}
$$

Condition

$$
X^{\alpha}\left(\mathbf{A}_{\epsilon}\right) \in \boldsymbol{B}(\mathcal{H}), \quad \epsilon \in\{-,+\}^{\kappa} \backslash\{(+, \ldots,+)\}
$$

can't be weakened.

Example

For every $\epsilon \neq(+, \ldots,+)$ we can find \mathbf{A} and \mathbf{B} such that $\mathbf{A} \preccurlyeq \mathbf{B}$ and
(1) $\boldsymbol{X}^{\alpha}\left(\mathbf{A}_{\delta}\right) \in \boldsymbol{B}(\mathcal{H})$ for every $\delta \in\{-,+\}^{\kappa} \backslash\{\epsilon\}$ and $\alpha \in \mathbb{N}_{*}^{\kappa}$,
(2) $\mathscr{D}\left(X^{\alpha}(\mathbf{B})\right) \not \subset \mathscr{D}\left(X^{\alpha}(\mathbf{A})\right)$ for every $\alpha \in \mathbb{N}_{*}^{\kappa}$.

Let $\mathbf{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ be κ - tuples of commuting positive selfadjoint operators in \mathcal{H}. Define the set

$$
\Lambda(\mathbf{A}, \mathbf{B}):=\left\{\alpha \in[0, \infty)^{\kappa}: X^{\alpha}(\mathbf{A}) \leqslant X^{\alpha}(\mathbf{B})\right\} .
$$

We know that relation $\mathbf{A} \preccurlyeq \mathbf{B}$ implies the equality $\Lambda(\mathbf{A}, \mathbf{B})=[0, \infty)^{\kappa}$.
What should be assumed about $\Lambda(\mathbf{A}, \mathbf{B})$ to have the reverse implication?

Without any additional informations about \mathbf{A} and \mathbf{B} we can formulate the following

Proposition

If $\boldsymbol{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ are κ-tuples of commuting positive selfadjoint operators in \mathcal{H}, then the following conditions are equivalent
(i) $\boldsymbol{A} \preccurlyeq \boldsymbol{B}$,
(ii) for every $j=1, \ldots, \kappa$ the set $\Lambda(\boldsymbol{A}, \boldsymbol{B}) \cap\left\{s e_{j}: s \in[0, \infty)\right\}$, where $e_{j}=(0 \ldots, \underbrace{1}_{j}, \ldots, 0)$, is unbounded.

Theorem

Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{\kappa}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{\kappa}\right)$ be κ-tuples of commuting positive selfadjoint operators such that $\mathscr{N}\left(A_{j}\right)=\{0\}$ for $j=1, \ldots, \kappa$. Then the following conditions are equivalent:
(i) $\boldsymbol{A} \preccurlyeq \boldsymbol{B}$,
(ii) $\Lambda(\boldsymbol{A}, \boldsymbol{B})=[0, \infty)^{\kappa}$,
(iii) $\sup _{\alpha \in \Lambda(\boldsymbol{A}, \boldsymbol{B})} \frac{\alpha_{j}}{1+|\alpha|-\alpha_{j}}=\infty, \quad j=1, \ldots, \kappa$.

