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Notation

H� complex Hilbert space,

By an operator in a complex Hilbert space H we understand a

linear mapping A : H ⊇ D(A)→ H de�ned on a linear

subspace D(A) of H, called the domain of A.

If the operator A is closable, we denote by Ā its closure.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

Notation

H� complex Hilbert space,

By an operator in a complex Hilbert space H we understand a

linear mapping A : H ⊇ D(A)→ H de�ned on a linear

subspace D(A) of H, called the domain of A.

If the operator A is closable, we denote by Ā its closure.
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De�nitions

Denote by B(H) the C ∗-algebra of all bounded operators A in

H with D(A) = H. As usual, I = IH stands for the identity

operator on H.

Bs(H) = {A ∈ B(H) : A = A∗}
Given two selfadjoint operators A,B ∈ B(H), we write A 6 B

whenever 〈Ah, h〉 6 〈Bh, h〉 for all h ∈ H.
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De�nitions

A densely de�ned operator A in H is said to be selfadjoint if

A = A∗ and positive if 〈Ah, h〉 > 0 for all h ∈ D(A).

If A and B are positive selfadjoint operators in H such that

D(B1/2) ⊆ D(A1/2) and ‖A1/2h‖ 6 ‖B1/2h‖ for all
h ∈ D(B1/2), then we write A 6 B .

The last de�nition of 6 is easily seen to be consistent with

that for bounded operators.
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Remark

In general inequality 0 6 A 6 B , where A,B ∈ B(H), may not

imply An 6 Bn, where n ∈ N.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in H. Then the

following conditions are equivalent:

(i) An 6 Bn for all n ∈ N,
(ii) {n ∈ N : An 6 Bn} is in�nite,

(iii) A 4 B.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

Remark

In general inequality 0 6 A 6 B , where A,B ∈ B(H), may not

imply An 6 Bn, where n ∈ N.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in H. Then the

following conditions are equivalent:

(i) An 6 Bn for all n ∈ N,
(ii) {n ∈ N : An 6 Bn} is in�nite,
(iii) A 4 B.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

Let us consider two-dimensional Hilbert space H = C2.Let A and

Bθ be the matrices given by

A =

[
1 1

1 1

]
and Bθ =

[
2 1

1 θ

]
for θ ∈ [1,∞). (1)

Clearly, A > 0 and Bθ > 0.

Proposition

Let A and Bθ be as in (1). Then for every positive integer k there

exists θk ∈ (2,∞) such that for all θ ∈ [θk ,∞),

(i) An 6 Bn
θ for all n = 0, . . . , k,

(ii) A 64 Bθ.
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The de�nition of spectral order

Let A,B ∈ Bs(H) with spectral measure EA and EB ,

respectively. We write A 4 B if EB((−∞, x ]) 6 EA((−∞, x ])
for all x ∈ R.

The relation 4 is a partial order in the set of all selfadjoint

operators in H.
This de�nition was introduced in 1971 by Olson.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

The de�nition of spectral order

Let A,B ∈ Bs(H) with spectral measure EA and EB ,

respectively. We write A 4 B if EB((−∞, x ]) 6 EA((−∞, x ])
for all x ∈ R.

The relation 4 is a partial order in the set of all selfadjoint

operators in H.

This de�nition was introduced in 1971 by Olson.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

The de�nition of spectral order

Let A,B ∈ Bs(H) with spectral measure EA and EB ,

respectively. We write A 4 B if EB((−∞, x ]) 6 EA((−∞, x ])
for all x ∈ R.

The relation 4 is a partial order in the set of all selfadjoint

operators in H.
This de�nition was introduced in 1971 by Olson.

Artur Pªaneta One-dimensional and multidimensional spectral order



Spectral order 4
Multidimensional spectral order

Introduction
4 and 6-comparison

Lattices

Kadison (1951): (Bs(H),6) is an anti-lattice, i.e., for any

A,B ∈ Bs(H), the supremum of the set {A,B} exists if and
only if A,B are comparable (either A 6 B or B 6 A).

Sherman (1951): If the set of all selfadjoint elements of a

C ∗-algebra A with the usual order forms a lattice, then A is

commutative.

Olson (1971): If S is the set of all selfadjoint elements of a

von Neumann algebra V in B(H) then, (S,4) is a

conditionally complete lattice.
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The de�nition of spectral order for unbounded operators

Given two selfadjoint operators A and B in H with spectral

measure EA and EB , respectively, we write A 4 B if

EB((−∞, x ]) 6 EA((−∞, x ]) for all x ∈ R.

In the case of unbounded operators closed supports of EA and EB
are not compact.
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Proposition

Let A and B be selfadjoint operators in H such that A 4 B. Then

〈Ah, h〉 6 〈Bh, h〉 for all h ∈ D(A) ∩D(B). Moreover, if A and B

are bounded from below, then D(B) ⊆ D(A).

Remark

In general, the relation A 4 B implies neither D(B) ⊆ D(A) nor

D(A) ⊆ D(B). It is even possible to �nd operators A and B such

that A 4 B and D(A) ∩D(B) = {0} 6= H.
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Theorem (M. P. Olson, M. Fujii, I. Kasahara, A. P.,J. Stochel)

If A and B are selfadjoint operators in H, then the following

conditions are equivalent:

(i) A 4 B,

(ii) f (A) 6 f (B) for each bounded continuous monotonically

increasing function f : R→ [0,∞),

(iii) f (A) 6 f (B) for each bounded monotonically increasing

function f : R→ R.
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De�nitions

D∞(A) =
⋂∞

n=1 D(An).

An element of

B(A) =
⋃
a>0

{h ∈ D∞(A) : ∃c>0∀n>0‖Anh‖ 6 can}

is called a bounded vector of A.
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Theorem

If A and B are positive selfadjoint operators in H, then the

following conditions are equivalent:

(i) A 4 B,

(ii) D∞(B) ⊆ D∞(A) and the set IA,B(h) is unbounded for all

h ∈ D∞(B),

(iii) B(B) ⊆ D∞(A) and the set IA,B(h) is unbounded for all

h ∈ B(B),

(iv) B(B) ⊆ B(A) and the set IA,B(h) is unbounded for all

h ∈ B(B),

where IA,B(h) := {s ∈ [0,∞) : 〈Ash, h〉 6 〈Bsh, h〉} for
h ∈ D∞(A) ∩D∞(B).
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Recall that due to Stone's theorem the in�nitesimal generator of a

C0-semigroup of bounded selfadjoint operators on H is always

selfadjoint.

Theorem

Let {Tj(t)}t>0 ⊆ B(H) be a C0-semigroup of selfadjoint operators

and Aj be its in�nitesimal generator, j = 1, 2. Then the following

conditions are equivalent:

(i) A1 4 A2,

(ii) T1(t) 4 T2(t) for some t > 0,

(iii) T1(t) 4 T2(t) for every t > 0,

(iv) T1(t) 6 T2(t) for some t > 0 and

EA((−∞, x ])EB((−∞, x ]) = EB((−∞, x ])EA((−∞, x ]) for

every x ∈ R,
(v) T1(nt) 6 T2(nt) for some t > 0 and for in�nitely many n ∈ N.
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In the multidimensional case we restrict ours considerations to

κ-tuples of selfadjoint operators, which consists of commuting

operators.

We say that selfadjoint operators A and B in H (spectrally)

commute if their spectral measures commute, i.e.,

EA(σ)EB(τ) = EB(τ)EA(σ) for all Borel subsets σ, τ of R.
EA-joint spectral measure of A = (A1, . . . ,Aκ),
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De�nition

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a κ-tuples of
commuting selfadjoint operators in H. We write A 4 B if

EB((−∞, x ]) 6 EA((−∞, x ]) for every x = (x1, . . . , xκ) ∈ Rκ,
where (−∞, x ] := (−∞, x1]× . . .× (−∞, xκ].
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Notation and de�nitions

S(Rκ,E ) - the set of all E - a.e. �nite Borel function

f : Rκ → R,

|α| := α1 + . . .+ ακ for α = (α1, . . . , ακ) ∈ [0,∞)κ,

xα := xα11 . . . xακ
κ for x = (x1, . . . , xκ) and α = (α1, . . . , ακ).
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Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be κ-tuples of
commuting selfadjoint operators in H such, that A 4 B. If

ϕ ∈ S(Rκ,EA) ∩ S(Rκ,EB) is separately monotonically increasing

Borel function, then ϕ(A) 4 ϕ(B). In particular ϕ(A) 4 ϕ(B) for

every separately monotonically increasing Borel function

ϕ : Rκ → R.
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Remark

Suppose that dimH > 1. Then each Borel function ϕ : Rκ → R
satisfying condition

A 4 B =⇒ ϕ(A) 4 ϕ(B) (2)

for every A, B κ-tuples of commuting selfadjoint operators, has to

be separately monotonically increasing.
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Corollary

Let A and B be κ-tuples of commuting selfadjoint operators. Then

the following conditions are equivalent:

(i) A 4 B,

(ii) ϕ(A) 6 ϕ(B) for every separately monotonically increasing

bounded continuous function ϕ : Rκ → R,
(iii) ϕ(A) 6 ϕ(B) for every separately monotonically increasing

bounded Borel function ϕ : Rκ → R.
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Remark

Olson proved that the spectral order is not a vector order. In

particular the implication A 4 B =⇒ A + C 4 B + C does not

hold for some A,B,C ∈ Bs(H). However spectral order has still
some traces of vector order properties.

Corollary

Let (A1,A2) and (B1,B2) be pairs of commuting selfadjoint

operators in H. Assume that A1 4 B1 and A2 4 B2. Then

A1 + A2 4 B1 + B2.
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Let

Xα(A) =

∫
Rκ

xαdEA(x) = Aα11 . . .Aακ
κ ,

for α ∈ Nκ.
What are the connections between the domains of operators Xα(A)
and Xα(B), if A 4 B?
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Let

Cε := (C ε11 , . . . ,C
εκ
κ ),

for C = (C1, . . . ,Cκ) - κ-tuples of commuting selfadjoint operators

in H and ε = (ε1, . . . , εκ) ∈ {−,+}κ, where C± :=
∫
R x±dEC (x).

Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be a κ-tuples of
commuting selfadjoint operators such that A 4 B and α ∈ Nκ. If

Xα(Aε) ∈ B(H), ε ∈ {−,+}κ\{(+, . . . ,+)},

then

D(Xα(B)) ⊂ D(Xα(A)). (3)
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Condition

Xα(Aε) ∈ B(H), ε ∈ {−,+}κ\{(+, . . . ,+)},

can't be weakened.

Example

For every ε 6= (+, . . . ,+) we can �nd A and B such that A 4 B

and

1 Xα(Aδ) ∈ B(H) for every δ ∈ {−,+}κ\{ε} and α ∈ Nκ∗ ,
2 D(Xα(B)) 6⊂ D(Xα(A)) for every α ∈ Nκ∗ .
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Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be κ- tuples of
commuting positive selfadjoint operators in H. De�ne the set

Λ(A,B) := {α ∈ [0,∞)κ : Xα(A) 6 Xα(B)}.

We know that relation A 4 B implies the equality

Λ(A,B) = [0,∞)κ.
What should be assumed about Λ(A,B) to have the reverse

implication?
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Without any additional informations about A and B we can

formulate the following

Proposition

If A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) are κ-tuples of
commuting positive selfadjoint operators in H, then the following

conditions are equivalent

(i) A 4 B,

(ii) for every j = 1, . . . , κ the set Λ(A,B) ∩ {sej : s ∈ [0,∞)},
where ej = (0 . . . , 1︸︷︷︸

j

, . . . , 0), is unbounded.
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Theorem

Let A = (A1, . . . ,Aκ) and B = (B1, . . . ,Bκ) be κ-tuples of
commuting positive selfadjoint operators such that N (Aj) = {0}
for j = 1, . . . , κ. Then the following conditions are equivalent:

(i) A 4 B,

(ii) Λ(A,B) = [0,∞)κ,

(iii) sup
α∈Λ(A,B)

αj

1 + |α| − αj

=∞, j = 1, . . . , κ.
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