One-dimensional and multidimensional spectral order

Artur Płaneta

University of Agriculture in Krakow, Poland

This presentation is based on the joint work with J. Stochel September 5-10, 2011, Nemecká

1 Spectral order \preccurlyeq

- Introduction
- \preccurlyeq and \leqslant -comparison

2 Multidimensional spectral order

- General case
- Monomials
- Monomials and positive operators

- 同下 - 三下 - 三日

Notation

• *H*- complex Hilbert space,

イロン イヨン イヨン イヨン

æ

Notation

- *H* complex Hilbert space,
- By an operator in a complex Hilbert space H we understand a linear mapping A: H ⊇ D(A) → H defined on a linear subspace D(A) of H, called the *domain* of A.

Notation

- *H* complex Hilbert space,
- By an operator in a complex Hilbert space H we understand a linear mapping A: H ⊇ D(A) → H defined on a linear subspace D(A) of H, called the *domain* of A.
- If the operator A is closable, we denote by \overline{A} its closure.

 Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.

イロン イヨン イヨン イヨン

э

 Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.

•
$$\boldsymbol{B}_{s}(\mathcal{H}) = \{A \in \boldsymbol{B}(\mathcal{H}) \colon A = A^{*}\}$$

・ロト ・日本・ ・ ヨト・ ・ ヨト・

э

 Denote by B(H) the C*-algebra of all bounded operators A in *H* with D(A) = *H*. As usual, I = I_H stands for the identity operator on *H*.

•
$$\boldsymbol{B}_{s}(\mathcal{H}) = \{A \in \boldsymbol{B}(\mathcal{H}) \colon A = A^{*}\}$$

Given two selfadjoint operators A, B ∈ B(H), we write A ≤ B whenever (Ah, h) ≤ (Bh, h) for all h ∈ H.

イロト 不得下 イヨト イヨト

• A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.

イロン イヨン イヨン イヨン

э

- A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}(B^{1/2}) \subseteq \mathscr{D}(A^{1/2})$ and $||A^{1/2}h|| \leq ||B^{1/2}h||$ for all $h \in \mathscr{D}(B^{1/2})$, then we write $A \leq B$.

- A densely defined operator A in \mathcal{H} is said to be *selfadjoint* if $A = A^*$ and *positive* if $\langle Ah, h \rangle \ge 0$ for all $h \in \mathscr{D}(A)$.
- If A and B are positive selfadjoint operators in \mathcal{H} such that $\mathscr{D}(B^{1/2}) \subseteq \mathscr{D}(A^{1/2})$ and $||A^{1/2}h|| \leq ||B^{1/2}h||$ for all $h \in \mathscr{D}(B^{1/2})$, then we write $A \leq B$.
- The last definition of ≤ is easily seen to be consistent with that for bounded operators.

Remark

In general inequality $0 \leq A \leq B$, where $A, B \in B(\mathcal{H})$, may not imply $A^n \leq B^n$, where $n \in \mathbb{N}$.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H} . Then the following conditions are equivalent:

(i)
$$A^n \leq B^n$$
 for all $n \in \mathbb{N}$,

(ii) $\{n \in \mathbb{N} : A^n \leq B^n\}$ is infinite,

Remark

In general inequality $0 \leq A \leq B$, where $A, B \in B(\mathcal{H})$, may not imply $A^n \leq B^n$, where $n \in \mathbb{N}$.

Theorem (M.P. Olson, A. P., J. Stochel)

Let A and B be positive selfadjoint operators in \mathcal{H} . Then the following conditions are equivalent:

(i)
$$A^n \leq B^n$$
 for all $n \in \mathbb{N}$,
(ii) $\{n \in \mathbb{N} : A^n \leq B^n\}$ is infinite,
(iii) $A \leq B$.

Spectral order \preccurlyeq Introduction Multidimensional spectral order \preccurlyeq and \leqslant -con

Let us consider two-dimensional Hilbert space $\mathcal{H} = \mathbb{C}^2$.Let A and B_{θ} be the matrices given by

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } B_{\theta} = \begin{bmatrix} 2 & 1 \\ 1 & \theta \end{bmatrix} \text{ for } \theta \in [1, \infty). \tag{1}$$

Clearly, $A \ge 0$ and $B_{\theta} \ge 0$.

Proposition

Let A and B_{θ} be as in (1). Then for every positive integer k there exists $\theta_k \in (2, \infty)$ such that for all $\theta \in [\theta_k, \infty)$, (i) $A^n \leq B_{\theta}^n$ for all n = 0, ..., k, (ii) $A \not\preccurlyeq B_{\theta}$.

(D) (A) (A) (A) (A)

The definition of spectral order

• Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. We write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.

イロト 不得下 イヨト イヨト

The definition of spectral order

- Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. We write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation ≼ is a partial order in the set of all selfadjoint operators in *H*.

The definition of spectral order

- Let $A, B \in B_s(\mathcal{H})$ with spectral measure E_A and E_B , respectively. We write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.
- The relation ≼ is a partial order in the set of all selfadjoint operators in *H*.
- This definition was introduced in 1971 by Olson.

Lattices

Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).

э

Lattices

- Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).
- Sherman (1951): If the set of all selfadjoint elements of a C^* -algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.

Lattices

- Kadison (1951): (B_s(H), ≤) is an anti-lattice, i.e., for any A, B ∈ B_s(H), the supremum of the set {A, B} exists if and only if A, B are comparable (either A ≤ B or B ≤ A).
- Sherman (1951): If the set of all selfadjoint elements of a C^* -algebra \mathcal{A} with the usual order forms a lattice, then \mathcal{A} is commutative.
- Olson (1971): If S is the set of all selfadjoint elements of a von Neumann algebra V in B(H) then, (S, ≼) is a conditionally complete lattice.

The definition of spectral order for unbounded operators

Given two selfadjoint operators A and B in \mathcal{H} with spectral measure E_A and E_B , respectively, we write $A \preccurlyeq B$ if $E_B((-\infty, x]) \leqslant E_A((-\infty, x])$ for all $x \in \mathbb{R}$.

In the case of unbounded operators closed supports of E_A and E_B are not compact.

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle Ah, h \rangle \leqslant \langle Bh, h \rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B) = \{0\} \neq \mathcal{H}$.

Proposition

Let A and B be selfadjoint operators in \mathcal{H} such that $A \preccurlyeq B$. Then $\langle Ah, h \rangle \leqslant \langle Bh, h \rangle$ for all $h \in \mathscr{D}(A) \cap \mathscr{D}(B)$. Moreover, if A and B are bounded from below, then $\mathscr{D}(B) \subseteq \mathscr{D}(A)$.

Remark

In general, the relation $A \preccurlyeq B$ implies neither $\mathscr{D}(B) \subseteq \mathscr{D}(A)$ nor $\mathscr{D}(A) \subseteq \mathscr{D}(B)$. It is even possible to find operators A and B such that $A \preccurlyeq B$ and $\mathscr{D}(A) \cap \mathscr{D}(B) = \{0\} \neq \mathcal{H}$.

Theorem (M. P. Olson, M. Fujii, I. Kasahara, A. P., J. Stochel)

If A and B are selfadjoint operators in \mathcal{H} , then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $f(A) \leq f(B)$ for each bounded continuous monotonically increasing function $f : \mathbb{R} \to [0, \infty)$,
- (iii) $f(A) \leq f(B)$ for each bounded monotonically increasing function $f : \mathbb{R} \to \mathbb{R}$.

・ロト ・聞ト ・ヨト ・ヨト

•
$$\mathscr{D}^{\infty}(A) = \bigcap_{n=1}^{\infty} \mathscr{D}(A^n).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\mathscr{D}^{\infty}(A) = \bigcap_{n=1}^{\infty} \mathscr{D}(A^n).$
- An element of

$$\mathscr{B}(A) = \bigcup_{a>0} \{h \in \mathscr{D}^{\infty}(A) \colon \exists_{c>0} \forall_{n \ge 0} \|A^n h\| \leqslant ca^n \}$$

is called a *bounded vector* of A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

If A and B are positive selfadjoint operators in \mathcal{H} , then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $\mathscr{D}^{\infty}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{D}^{\infty}(B)$,
- (iii) $\mathscr{B}(B) \subseteq \mathscr{D}^{\infty}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,
- (iv) $\mathscr{B}(B) \subseteq \mathscr{B}(A)$ and the set $\mathscr{I}_{A,B}(h)$ is unbounded for all $h \in \mathscr{B}(B)$,

where $\mathscr{I}_{A,B}(h) := \{s \in [0,\infty) \colon \langle A^s h, h \rangle \leqslant \langle B^s h, h \rangle \}$ for $h \in \mathscr{D}^{\infty}(A) \cap \mathscr{D}^{\infty}(B).$

イロト イポト イヨト イヨト

Recall that due to Stone's theorem the infinitesimal generator of a C_0 -semigroup of bounded selfadjoint operators on \mathcal{H} is always selfadjoint.

Theorem

Let $\{T_j(t)\}_{t\geq 0} \subseteq B(\mathcal{H})$ be a C_0 -semigroup of selfadjoint operators and A_j be its infinitesimal generator, j = 1, 2. Then the following conditions are equivalent:

(i)
$$A_1 \preccurlyeq A_2$$
,
(ii) $T_1(t) \preccurlyeq T_2(t)$ for some $t > 0$,
(iii) $T_1(t) \preccurlyeq T_2(t)$ for every $t > 0$,
(iv) $T_1(t) \leqslant T_2(t)$ for some $t > 0$ and
 $E_A((-\infty, x])E_B((-\infty, x]) = E_B((-\infty, x])E_A((-\infty, x])$ for
every $x \in \mathbb{R}$,

(v) $T_1(nt) \leqslant T_2(nt)$ for some t > 0 and for infinitely many $n \in \mathbb{N}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

 In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.

イロン イヨン イヨン イヨン

- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_A(\sigma)E_B(\tau) = E_B(\tau)E_A(\sigma)$ for all Borel subsets σ, τ of \mathbb{R} .

- In the multidimensional case we restrict ours considerations to κ-tuples of selfadjoint operators, which consists of commuting operators.
- We say that selfadjoint operators A and B in \mathcal{H} (spectrally) commute if their spectral measures commute, i.e., $E_A(\sigma)E_B(\tau) = E_B(\tau)E_A(\sigma)$ for all Borel subsets σ, τ of \mathbb{R} .
- $E_{\mathbf{A}}$ -joint spectral measure of $\mathbf{A} = (A_1, \dots, A_\kappa)$,

Let $\mathbf{A} = (A_1, \ldots, A_\kappa)$ and $\mathbf{B} = (B_1, \ldots, B_\kappa)$ be a κ -tuples of commuting selfadjoint operators in \mathcal{H} . We write $\mathbf{A} \preccurlyeq \mathbf{B}$ if $E_{\mathbf{B}}((-\infty, x]) \leqslant E_{\mathbf{A}}((-\infty, x])$ for every $x = (x_1, \ldots, x_\kappa) \in \mathbb{R}^\kappa$, where $(-\infty, x] := (-\infty, x_1] \times \ldots \times (-\infty, x_\kappa]$.

(ロ) (部) (E) (E) (E)

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$,

・ロト ・回ト ・ヨト ・ヨト

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$,

•
$$|\alpha| := \alpha_1 + \ldots + \alpha_\kappa$$
 for $\alpha = (\alpha_1, \ldots, \alpha_\kappa) \in [0, \infty)^\kappa$

・ロト ・回ト ・ヨト ・ヨト

Notation and definitions

• $S(\mathbb{R}^{\kappa}, E)$ - the set of all E - a.e. finite Borel function $f: \mathbb{R}^{\kappa} \to \overline{\mathbb{R}}$,

•
$$|\alpha| := \alpha_1 + \ldots + \alpha_{\kappa}$$
 for $\alpha = (\alpha_1, \ldots, \alpha_{\kappa}) \in [0, \infty)^{\kappa}$,

•
$$x^{\alpha} := x_1^{\alpha_1} \dots x_{\kappa}^{\alpha_{\kappa}}$$
 for $x = (x_1, \dots, x_{\kappa})$ and $\alpha = (\alpha_1, \dots, \alpha_{\kappa})$.

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let $\mathbf{A} = (A_1, \ldots, A_\kappa)$ and $\mathbf{B} = (B_1, \ldots, B_\kappa)$ be κ -tuples of commuting selfadjoint operators in \mathcal{H} such, that $\mathbf{A} \preccurlyeq \mathbf{B}$. If $\varphi \in S(\mathbb{R}^\kappa, E_{\mathbf{A}}) \cap S(\mathbb{R}^\kappa, E_{\mathbf{B}})$ is separately monotonically increasing Borel function, then $\varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B})$. In particular $\varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B})$ for every separately monotonically increasing Borel function $\varphi \colon \mathbb{R}^\kappa \to \mathbb{R}$.

Remark

Suppose that dim $\mathcal{H} \ge 1$. Then each Borel function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ satisfying condition

$$\mathbf{A} \preccurlyeq \mathbf{B} \implies \varphi(\mathbf{A}) \preccurlyeq \varphi(\mathbf{B}) \tag{2}$$

for every A, B κ -tuples of commuting selfadjoint operators, has to be separately monotonically increasing.

イロト イヨト イヨト イヨト

Corollary

Let **A** and **B** be κ -tuples of commuting selfadjoint operators. Then the following conditions are equivalent:

- (i) $A \preccurlyeq B$,
- (ii) $\varphi(\mathbf{A}) \leq \varphi(\mathbf{B})$ for every separately monotonically increasing bounded continuous function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$,
- (iii) $\varphi(\mathbf{A}) \leq \varphi(\mathbf{B})$ for every separately monotonically increasing bounded Borel function $\varphi \colon \mathbb{R}^{\kappa} \to \mathbb{R}$.

Remark

Olson proved that the spectral order is not a vector order. In particular the implication $A \preccurlyeq B \implies A + C \preccurlyeq B + C$ does not hold for some $A, B, C \in B_s(\mathcal{H})$. However spectral order has still some traces of vector order properties.

(D) (A) (A) (A) (A)

Remark

Olson proved that the spectral order is not a vector order. In particular the implication $A \preccurlyeq B \implies A + C \preccurlyeq B + C$ does not hold for some $A, B, C \in B_s(\mathcal{H})$. However spectral order has still some traces of vector order properties.

Corollary

Let (A_1, A_2) and (B_1, B_2) be pairs of commuting selfadjoint operators in \mathcal{H} . Assume that $A_1 \preccurlyeq B_1$ and $A_2 \preccurlyeq B_2$. Then

$$\overline{A_1+A_2}\preccurlyeq \overline{B_1+B_2}.$$

イロト 不得下 イヨト イヨト

Let

$$X^{lpha}(\mathbf{A}) = \int_{\mathbb{R}^{\kappa}} x^{lpha} dE_{\mathbf{A}}(x) = \overline{A_1^{lpha_1} \dots A_{\kappa}^{lpha_{\kappa}}},$$

for $\alpha \in \mathbb{N}^{\kappa}$.

What are the connections between the domains of operators $X^{\alpha}(\mathbf{A})$ and $X^{\alpha}(\mathbf{B})$, if $\mathbf{A} \preccurlyeq \mathbf{B}$?

イロン イヨン イヨン イヨン

Let

$$\mathbf{C}_{\epsilon} := (C_1^{\epsilon_1}, \ldots, C_{\kappa}^{\epsilon_{\kappa}}),$$

for $\mathbf{C} = (C_1, \ldots, C_{\kappa})$ - κ -tuples of commuting selfadjoint operators in \mathcal{H} and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{\kappa}) \in \{-, +\}^{\kappa}$, where $C^{\pm} := \int_{\mathbb{R}} x^{\pm} dE_C(x)$.

Theorem

Let $\mathbf{A} = (A_1, \ldots, A_{\kappa})$ and $\mathbf{B} = (B_1, \ldots, B_{\kappa})$ be a κ -tuples of commuting selfadjoint operators such that $\mathbf{A} \preccurlyeq \mathbf{B}$ and $\alpha \in \mathbb{N}^{\kappa}$. If

$$X^lpha(oldsymbol{A}_\epsilon)\in oldsymbol{B}(\mathcal{H}), \quad \epsilon\in\{-,+\}^\kappaackslash\{(+,\ldots,+)\},$$

then

$$\mathscr{D}(X^{\alpha}(B)) \subset \mathscr{D}(X^{\alpha}(A)).$$
(3)

・ロト ・四ト ・ヨト ・ヨト

Condition

$$X^{\alpha}(\mathbf{A}_{\epsilon}) \in \boldsymbol{B}(\mathcal{H}), \quad \epsilon \in \{-,+\}^{\kappa} \setminus \{(+,\ldots,+)\},$$

can't be weakened.

Example

For every $\epsilon \neq (+,\ldots,+)$ we can find A and B such that $\textbf{A} \preccurlyeq \textbf{B}$ and

- $\ \, {\bf O} \ \, X^{\alpha}({\bf A}_{\delta})\in {\boldsymbol {\cal B}}({\cal H}) \ {\rm for \ every} \ \, \delta\in\{-,+\}^{\kappa}\backslash\{\epsilon\} \ \, {\rm and} \ \, \alpha\in\mathbb{N}^{\kappa}_{*},$

(日)(4月)(4日)(4日)(日)

Let $\mathbf{A} = (A_1, \dots, A_{\kappa})$ and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be κ - tuples of commuting positive selfadjoint operators in \mathcal{H} . Define the set

$$\Lambda(\mathbf{A},\mathbf{B}) := \{ \alpha \in [0,\infty)^{\kappa} \colon X^{\alpha}(\mathbf{A}) \leqslant X^{\alpha}(\mathbf{B}) \}.$$

We know that relation $\mathbf{A} \preccurlyeq \mathbf{B}$ implies the equality $\Lambda(\mathbf{A}, \mathbf{B}) = [0, \infty)^{\kappa}$. What should be assumed about $\Lambda(\mathbf{A}, \mathbf{B})$ to have the reverse implication?

(D) (A) (A) (A) (A)

Without any additional informations about ${\bf A}$ and ${\bf B}$ we can formulate the following

Proposition

If $\mathbf{A} = (A_1, \dots, A_\kappa)$ and $\mathbf{B} = (B_1, \dots, B_\kappa)$ are κ -tuples of commuting positive selfadjoint operators in \mathcal{H} , then the following conditions are equivalent

(i)
$$\mathbf{A} \preccurlyeq \mathbf{B}$$
,
(ii) for every $j = 1, ..., \kappa$ the set $\Lambda(\mathbf{A}, \mathbf{B}) \cap \{se_j : s \in [0, \infty)\}$,
where $e_j = (0, ..., \underbrace{1}_{j}, ..., 0)$, is unbounded.

(D) (A) (A) (A) (A)

Theorem

Let
$$\mathbf{A} = (A_1, \dots, A_{\kappa})$$
 and $\mathbf{B} = (B_1, \dots, B_{\kappa})$ be κ -tuples of
commuting positive selfadjoint operators such that $\mathcal{N}(A_j) = \{0\}$
for $j = 1, \dots, \kappa$. Then the following conditions are equivalent:
(i) $\mathbf{A} \preccurlyeq \mathbf{B}$,
(ii) $\Lambda(\mathbf{A}, \mathbf{B}) = [0, \infty)^{\kappa}$,
(iii) $\sup_{\alpha \in \Lambda(\mathbf{A}, \mathbf{B})} \frac{\alpha_j}{1 + |\alpha| - \alpha_j} = \infty$, $j = 1, \dots, \kappa$.

◆□→ ◆圖→ ◆注→ ◆注→ □注□