Optimal Control for a Class of History-dependent Hemivariational Inequalities

Anna Ochal

Jagiellonian University Krakow, Poland

Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control

Nemecka, Slovak Republic September 6, 2011

Outline

- Motivation, physical background
- Hyperbolic hemivariational inequality
 - Detailed problem: dynamic viscoelastic contact
 - Subdifferential boundary conditions in mechanics
 - Variational formulation and existence results
- Boltza optimal control problem
- Asymptotic behavior of optimal solutions

Problem setting

Let $oldsymbol{V}$ and $oldsymbol{Z}$ be separable Banach spaces and let $oldsymbol{H}$ be a separable Hilbert space. Suppose

$$V \subset Z \subset H \subset Z^* \subset V^*$$

with dense and continuous embeddings and that $V\subset Z$ compactly. Let $\gamma\in\mathcal{L}(Z,X)$, where X is a separable Banach space. Define the spaces

$$\mathcal{V}=L^2(0,T;V)$$
 , $\mathcal{Z}=L^2(0,T;Z)$, $\mathcal{W}=\{v\in\mathcal{V}\,:\,v'\in\mathcal{V}^*\}$.

Consider the following second order evolution inclusion:

find $y \in \mathcal{V}$ with $y' \in \mathcal{W}$ such that

$$\left\{egin{aligned} y''(t)+A(t,y'(t))+By(t)+\mathcal{S}y(t)+\ &+\gamma^*\,\partial J(t,\gamma y'(t))
otin f(t)+E(t)u(t) \end{aligned}
ight.$$
 a.e. $t\in(0,T)$ $y(0)=y_0,\ y'(0)=y_1$

where y is a state (displacement) and u is a control.

History-dependent operators

 $\mathcal{S}{:}\,\mathcal{V}
ightarrow \mathcal{V}^*$ and there exists $L_S > 0$ such that

$$\|\mathcal{S}y_1(t)-\mathcal{S}y_2(t)\|_{V^*} \leq L_S \!\int_0^t \|y_1(s)-y_2(s)\|_V\,ds \ orall y_1,\ y_2 \in \mathcal{V}, ext{ a.e. } t \in (0,T).$$

Examples

$$\mathcal{S}v(t) = R\Big(\int_0^t \, v(s) \, ds + v_0\Big) \quad orall \, v \in \mathcal{V}, \ orall \, t \in (0,T),$$

where $R:V o V^*$ is a Lipschitz continuous operator and $v_0\in V$.

$$\mathcal{S}v(t)=\int_0^t C(t-s)\,v(s)\,ds \quad orall\,v\in\mathcal{V},\ orall\,t\in(0,T),$$
 where $C\in L^2(0,T;\mathcal{L}(V,V^*)).$

Physical setting

 $\Omega \subset \mathbb{R}^d$ open, bounded with Lipschitz boundary occupied by a deformable viscoelastic body

 $\Gamma = \Gamma_D \cup \Gamma_N \cup \Gamma_C$ mutually disjoint parts Γ_C the potential contact surface

We suppose that the body is clamped on Γ_D , so the displacement field vanishes there. Volume forces of density f_1 act in Ω and surface tractions of density f_2 are applied on Γ_N .

Problem formulation

Let $y:Q\to\mathbb{R}^d$ be the displacement vector, $\sigma:Q\to\mathbb{S}^d$ the stress tensor and $\varepsilon(y)=(\varepsilon_{ij}(y))=\frac{1}{2}(y_{i,j}+y_{j,i})$ the linearized strain tensor, where $i,j=1,\ldots,d$. We employ the viscoelastic constitutive relation

$$\sigma(t) = \mathcal{A}(t,arepsilon(y'(t))) + \mathcal{B}(arepsilon(y(t))) + \int_0^t \mathcal{C}(t-s)arepsilon(y(s))\,ds$$

where \mathcal{A} , \mathcal{B} and \mathcal{C} are given constitutive functions. The contact problem can be stated as follows

$$\left\{egin{array}{ll} y''(t)-\operatorname{div}\sigma(y(t),y'(t))=f_1(t) & ext{in } Q \ \sigma(t)=\mathcal{A}(t,arepsilon(y'(t)))+\mathcal{B}(arepsilon(y(t)))+\ &+\int_0^t \mathcal{C}(t-s)arepsilon(y(s))\,ds & ext{in } Q \ y=0 & ext{on } \Gamma_D imes(0,T) \ \sigma n=f_2 & ext{on } \Gamma_N imes(0,T) \ -\sigma_
u(t)\in\partial j_
u(x,t,y_nu'(t)) & ext{on } \Gamma_C imes(0,T) \ -\sigma_
u(t)\in\partial j_
u(x,t,y'_
u(t)) & ext{on } \Gamma_C imes(0,T) \ ext{on } \Gamma_C imes$$

Clarke subdifferential

Given a locally Lipschitz function $h: X \to \mathbb{R}$, where X is a Banach space, we define (Clarke (1983)):

ullet the generalized directional derivative of h at $x\in X$ in the direction $v\in X$ by

$$h^0(x;v) = \limsup_{y o x,\; \lambda\downarrow 0} rac{h(y+\lambda v)-h(y)}{\lambda}.$$

ullet the generalized gradient of h at x by $\partial h(x)$, is a subset of a dual space X^* given by

$$\partial h(x) = \{\zeta \in X^* : h^0(x;v) \geq \langle \zeta,v
angle_{X^* imes X} ext{ for all } v \in X\}.$$

The locally Lipschitz function h is called $\operatorname{regular}$ (in the sense of Clarke) at $x \in X$ if for all $v \in X$ the one-sided directional derivative h'(x;v) exists and satisfies $h^0(x;v) = h'(x;v)$ for all $v \in X$.

Example

Given $\beta \in L^{\infty}_{loc}(\mathbb{R})$ we define the multivalued map $\widehat{\beta} \colon \mathbb{R} \to 2^{\mathbb{R}}$ which is obtained from β by filling in the jump procedure as follows

$$\widehat{eta}(oldsymbol{\xi}) = [eta(oldsymbol{\xi}), \overline{eta}(oldsymbol{\xi})] \subset \mathbb{R},$$

where

$$\underline{eta}(\xi) = \lim_{\delta o 0^+} \operatornamewithlimits{ess\,inf}_{|t-\xi| \leq \delta} eta(t), \ \ \overline{eta}(\xi) = \lim_{\delta o 0^+} \operatornamewithlimits{ess\,sup}_{|t-\xi| \leq \delta} eta(t).$$

From Chang (1981), it is known that there exists a locally Lipschitz function $j\colon \mathbb{R} \to \mathbb{R}$ determined (up to an additive constant) by the relation $j(t) = \int_{0}^{t} \beta(s) \, ds$ and

$$\partial j(t) \subset \widehat{eta}(t).$$

Additionaly, if $\lim_{t o \xi^\pm} eta(t)$ exist for every $\xi \in \mathbb{R}$, then we have

$$\partial j(t) = \widehat{eta}(t) \; ext{ for } \; t \in \mathbb{R}.$$

Nonmonotone diagram for the Winkler-type support

Taking the above into consideration, the boundary condition given by Winkler's law can be written as

$$-\sigma_
u \in \partial j(y_
u) = \widehat{eta}(y_
u) \, ext{ on } \Gamma_C,$$

where $j \colon \mathbb{R} \to \mathbb{R}$ is of the form

$$j(t) = \int_0^t eta(s) \, ds = \left\{egin{array}{ll} 0 & ext{if} & t < 0 \ rac{1}{2} \, k_0 \, t^2 & ext{if} & 0 \leq t \leq arepsilon \ rac{1}{2} \, k_0 \, arepsilon^2 & ext{if} & t > arepsilon. \end{array}
ight.$$

with

 $\beta : \mathbb{R} \to \mathbb{R}$ such that

$$eta(t) = egin{cases} 0 & ext{if} & t < 0 \ k_0 t & ext{if} & t \in [0,arepsilon) \ 0 & ext{if} & t \geq arepsilon \end{cases}$$

Nonmonotone laws

- a) Force-displacement diagrams for laminated products
- b) Force-displacement diagrams for glass fiber-reinforced epoxy laminated composites
- c) Ply stress-strain curve in a lamina with brittle behavior
- d) Force-displacement diagram for a graphite-epoxy composite laminate
- e) Force-displacement diagram for an aluminium-beryllium composite beam
- f) Scanlon's diagram

Variational formulation

We introduce the spaces $V=\{v\in H^1(\Omega;\mathbb{R}^d):v=0 \text{ on } \Gamma_D\}$, $H=L^2(\Omega;\mathbb{R}^d)$, $\mathcal{H}=L^2(\Omega;\mathbb{S}^d)$, \mathbb{S}^d is the space of symmetric matrices of order d.

Let $A{:}~(0,T) \times V \to V^*$, $B{:}~V \to V^*$ and $C{:}~(0,T) \times V \to V^*$ be defined by

$$\langle A(t,u),v
angle_{V^* imes V}=\langle \mathcal{A}(t,arepsilon(u)),arepsilon(v)
angle_{\mathcal{H}} \ \ ext{for}\ u,v\in V,\ t\in (0,T),$$

$$\langle Bu,v
angle_{V^* imes V}=\langle \mathcal{B}(arepsilon(u)),arepsilon(v)
angle_{\mathcal{H}} \ \ ext{ for } u,v\in V$$
 ,

$$\langle C(t)u,v
angle_{V^* imes V}=\langle \mathcal{C}(t)\,arepsilon(u),arepsilon(v)
angle_{\mathcal{H}} \ \ ext{for } u,v\in V,\ t\in (0,T).$$

We consider a function $f \colon (0,T) o V^*$ given by

$$\langle f(t),v
angle_{V^* imes V}=\langle f_1(t),v
angle_H+\langle f_2(t),v
angle_{L^2(\Gamma_N;\mathbb{R}^d)}$$

for all $v \in V$ and a.e. $t \in (0, T)$.

Variational formulation

From the equation of motion and the Green formula, we get

$$\langle y''(t),v
angle + \langle \sigma(t),arepsilon(v)
angle_{\mathcal{H}} = \langle f_1(t),v
angle_H + \int_\Gamma \sigma(t)
u\cdot v\,d\Gamma.$$

Taking into account the boundary conditions, we have

$$\int_{\Gamma} \sigma(t)
u \cdot v \ d\Gamma = \int_{\Gamma_N} f_2(t) \cdot v \ d\Gamma + \int_{\Gamma_C} \left(\sigma_
u(t) v_
u + \sigma_ au(t) \cdot v_ au
ight) \ d\Gamma$$

From the definition of the Clarke subdifferential, we have

$$egin{aligned} &-\sigma_{
u}(t)\xi \leq j^0_{
u}(x,t,y'_{
u}(x,t);\xi) & ext{for all } \xi \in \mathbb{R}, \ &-\sigma_{ au}(t) \cdot \eta \leq j^0_{ au}(x,t,y'_{ au}(x,t);\eta) & ext{for all } \eta \in \mathbb{R}^d. \end{aligned}$$

We obtain the following hemivariational inequality formulation:

find $y{:}\left(0,T
ight)
ightarrow V$ such that $y\in\mathcal{V}$, $y'\in\mathcal{W}$ and

$$egin{cases} \left\{ egin{aligned} \langle y''(t)+A(t,y'(t))+By(t)+\int_0^t C(t-s)y(s)\,ds,v
angle_{V^* imes V}+\ &+\int_{\Gamma_C} \left(j^0_
u(x,t,y'_
u(x,t);v_
u(x))+j^0_ au(x,t,y'_
u(x,t);v_
u(x))
ight)d\Gamma\geq \ &\geq \langle f(t),v
angle_{V^* imes V} ext{ for all }v\in V ext{ and a.e. }t\ &y(0)=y_0,\;\;y'(0)=y_1 \end{cases}$$

or equivalently

$$egin{cases} \left\{ egin{aligned} \langle y''(t)+A(t,y'(t))+By(t)+\int_0^t C(t-s)y(s)\,ds,v
angle_{V^* imes V}+\ &+J^0(t,\gamma y'(t);\gamma v)\geq \langle f(t),v
angle_{V^* imes V} & ext{for all }v\in V, ext{ a.e. }t\ &y(0)=y_0,\ y'(0)=y_1 \end{aligned}
ight.$$

where $J{:}(0,T) imes X o \mathbb{R},\ J(t,v)=\int_{\Gamma_C}j(x,t,v(x))\,d\Gamma$ with $j(x,t,v)=j_{
u}(x,t,v_{
u})+j_{ au}(x,t,v_{ au}).$

Abstract history-dependent evolution inclusion

PROBLEM P: find $y \in \mathcal{V}$ with $y' \in \mathcal{W}$ such that

$$\left\{egin{aligned} y''(t)+A(t,y'(t))+By(t)+\mathcal{S}y(t)+\ &+\gamma^*\,\partial J(t,\gamma y'(t))
otin f(t)+E(t)u(t) ext{ a.e. } t \end{aligned}
ight.$$

DEFINITION. A function $y \in \mathcal{V}$ is called a solution of Problem P if and only if $y' \in \mathcal{W}$ and there exists $\zeta \in \mathcal{Z}^*$ such that

Hypotheses

$$H(A): \quad A{:} \ (0,T) imes V o V^*$$
 is such that

- (i) $A(\cdot,v)$ is measurable on (0,T) for all $v\in V$;
- (ii) $A(t,\cdot)$ is strongly monotone, i.e. $\langle A(t,w)-A(t,v),w-v\rangle \geq m_1\|w-v\|_V^2$ for all $w,v\in V$, a.e. $t\in (0,T)$ with $m_1>0$;
- (iii) $\|A(t,v)\|_{V^*} \le a(t)+b\|v\|_V$ for all $v\in V$, a.e. $t\in (0,T)$ with $a\in L^2(0,T), a\ge 0, b>0;$
- (iv) $\langle A(t,v),v
 angle \geq lpha \|v\|_V^2$ for all $v\in V$, a.e. $t\in (0,T)$ with lpha>0 .

 $H(B): \quad B\colon V o V^*$ is bounded, linear, monotone and symmetric.

 $H(S): \quad \mathcal{S}{:}\, \mathcal{V}
ightarrow \mathcal{V}^*$ is such that $\,\exists L_S > 0: \,$

$$\|\mathcal{S}y_1(t)-\mathcal{S}y_2(t)\|_{V^*} \leq L_S \!\int_0^t \|y_1(s)-y_2(s)\|_V \, ds$$

 $\forall y_1, y_2 \in \mathcal{V}, \text{ a.e. } t \in (0, T).$

 $H(E): E \in L^{\infty}(0,T;\mathcal{L}(Y,V^*))$ and Y is a separable reflexive Banach space (the space of controls).

Hypotheses

- $H(J): \quad J{:}\ (0,T) imes L^2(\Gamma_C;\mathbb{R}^{\,d}) o \mathbb{R}$ is a functional such that
- (i) $J(\cdot,v)$ is measurable for all $v\in L^2(\Gamma_C;\mathbb{R}^d)$;
- (ii) $J(t,\cdot)$ is locally Lipschitz for a.e. $t\in(0,T)$;
- (iii) $\|\partial J(t,v)\|_{L^2(\Gamma_C;\mathbb{R}^d)} \le c_0 \left(1+\|v\|_{L^2(\Gamma_C;\mathbb{R}^d)}\right)$ for all $v\in L^2(\Gamma_C;\mathbb{R}^d)$, a.e. $t\in(0,T)$ with $c_0>0$;
- (iv) $J^0(t,v;-v) \leq d_0\left(1+\|v\|_{L^2(\Gamma_C;\mathbb{R}^d)}\right)$ for all $v\in L^2(\Gamma_C;\mathbb{R}^d)$, a.e. $t\in(0,T)$ with $d_0\geq 0$;
- (v) $(z_1-z_2,w_1-w_2)_{L^2(\Gamma_C;\mathbb{R}^d)}\geq -m_2\|w_1-w_2\|_{L^2(\Gamma_C;\mathbb{R}^d)}^2$ for all $z_i\in\partial J(t,w_i),\,w_i\in L^2(\Gamma_C;\mathbb{R}^d),\,i=1,2,$ a.e. $t\in(0,T)$ with $m_2\geq 0.$
- $(H_0): \quad f \in \mathcal{V}^*$, $y_0 \in V$, $y_1 \in H$.
- $rac{(H_1)}{0}$: $m_1>m_2\,\|\gamma\|^2\,c_e^2$, where $\|\gamma\|=\|\gamma\|_{\mathcal{L}(Z,L^2(\Gamma;\mathbb{R}^d))}$ and $c_e>\overline{0}$ is an embedding constant of V into Z.

Existence and uniqueness result

THEOREM 1. Assume that H(A), H(B), H(S), H(E), H(J), (H_0) , (H_1) hold and $u \in \mathcal{U} = L^2(0,T;Y)$. Then Problem P admits a unique solution.

Idea of the proof:

- existence of unique solution for evolutionary inclusion without memory term
 - regular initial data (i.e. $y_1 \in V$)
 - a standard reduction technique an evolution inclusion of the first order
 - a surjectivity result for the sum of two operators: one operator is closed, densely defined and maximal monotone, and the second one is bounded, coercive and pseudomonotone w.r.t. the graph norm topology of the domain of the first operator
 - remove the restriction on the initial data a density argument
- a fixed point argument

(Theorem 2.1 in [Migorski, O., Sofonea, M^3AS 2008]).

Continuous dependence on a control variable

PROPOSITION Under hypotheses of Theorem 1 and the condition

$$\underline{(H_2)}: \quad lpha > 2T\sqrt{T}\|C\|_{L^2(0,T;\mathcal{L}(V,V^*))},$$

if $\{u_n\} \subset \mathcal{U}$, $u_n \to u$ weakly in \mathcal{U} , then $y_n \to y$ weakly in \mathcal{V} and $y'_n \to y'$ weakly in \mathcal{W} , where y_n and y are unique solutions of Problem P corresponding to u_n and u, respectively.

Idea of the proof: a priori estimate

$$\|y_n\|_{C(0,T;V)} + \|y_n'\|_{\mathcal{W}} \leq \overline{c} \left(1 + \|y_0\|_V + \|y_1\|_H + \|f\|_{\mathcal{V}^*} + \|u_n\|_{\mathcal{U}} \right)$$

with $\overline{c} > 0$ independent on n.

A solution map

$$S:\mathcal{U}
i u\mapsto S(u)\subset\mathcal{X},$$

where $\mathcal{X}=\{y\in\mathcal{V}:y'\in\mathcal{W}\}$, has a closed graph in $(w-\mathcal{U})\times(w-\mathcal{X})$ - topology.

Bolza optimal control problem for hvi

$$\begin{cases} \Phi(y,u) = l(y(T),y'(T)) + \int_0^T F\left(t,y(t),y'(t),u(t)\right) \ dt \\ \Phi(y,u) \longrightarrow \inf =: m \\ \end{cases}$$
 where $u(t) \in U(t)$ a.e. $t \in (0,T), u(\cdot)$ is measurable, $y \in S(u)$

S(u) is the set of solutions of Problem P corresponding to a control u.

$$\underline{H(\Phi)}: l: H \times H \to \mathbb{R}$$
 is weakly lsc; $\overline{F}: [0,T] \times H \times H \times Y \to \mathbb{R} \cup \{+\infty\}$ is measurable and:

- (i) $F\left(t,\cdot,\cdot,\cdot\right)$ is seq. lsc on $H\times H\times Y$ for a.e. $t\in(0,T)$,
- (ii) $F\left(t,y,z,\cdot
 ight)$ is convex on Y, for all $y,z\in H$ and a.e. t,
- (iii) there exist M>0 , $\psi\in L^1(0,T)$ s.t. for all $y,z\in H$, $u\in Y$ and a.e. $t\in (0,T)$, we have

$$F(t,y,z,u) \ge \psi(t) - M\left(\|y\|_H + \|z\|_H + \|u\|_Y\right).$$

 $\dfrac{\mathrm{H}(\mathrm{U})\mathrm{:}\ U\mathrm{:}\ [0,T]\longrightarrow 2^Y\setminus\{\emptyset\}\ ext{is a multifunction s.t. for all }t\in[0,T],}{U(t) ext{ is a closed convex subset of }Y ext{ and }t\mapsto\|U(t)\|_Y\in L^\infty_+.$

 $S_U^q=\{w\in \mathcal{U}=L^q(0,T;Y): w(t)\in U(t) ext{ a.e. } t\}$ is nonempty [Hu, Papageorgiou (1997)].

By an admissible state-control pair (y,u) for (CP) we understood a pair of a state function y (which solves Problem P) and a control function $u \in S^2_U$. An admissible pair (y,u) is called an optimal solution to (CP) if and only if $\Phi(y,u)=m$.

Existence of optimal solution

THEOREM 2. If the hypotheses H(A), H(B), H(J), (H_0) , (H_1) , (H_2) , H(C), $H(\Phi)$ and H(U) hold, then the problem (CP) admits an optimal solution.

Proof. Applying the direct method of the calculus of variations.

By Theorem 1, $S(u) \neq \emptyset$ for all fixed $u \in \mathcal{U}$.

Let $\{(y_n,u_n)\}\subseteq \mathcal{X}\times \mathcal{U}$ be a minimizing sequence of admissible state-control pairs for the problem (CP), i.e. $y_n\in S(u_n),\ u_n(t)\in U(t)$ for a.e. $t\in (0,T)$ and $\lim_{n\to +\infty}\Phi(y_n,u_n)=m$.

From the hypothesis H(U), $u_n \to u$ weakly in $\mathcal U$ and $u(t) \in U(t)$ for a.e. t.

From the a priori estimate, we get $\|y_n\|_{\mathcal{V}} \leq c_1, \ \|y_n'\|_{\mathcal{W}} \leq c_2$ with $c_1, c_2 > 0$ independent of n. So for a subsequence we have

 $y_n \longrightarrow y$ weakly in $\mathcal V$ and $y_n' \longrightarrow y'$ weakly in $\mathcal W$.

From Proposition 2 $y \in S(u)$. Hence (y,u) is an admissible state—control pair.

It is also an optimal solution.

In fact, using the compactness of the embedding $\mathcal{W}\subset\mathcal{H}$, for a next subsequence, we have

$$y_n \longrightarrow y$$
 and $y_n' \longrightarrow y'$ both in \mathcal{H} .

Invoking now Theorem 2.1 of Balder (1987) we obtain that the cost functional Φ is sequentially lower semicontinuous on $L^2(0,T;H\times H)\times (w-L^q(0,T;Y))$. So,

$$m \leq \Phi(y,u) \leq \liminf_{n o +\infty} \Phi(y_n,u_n) = m,$$

which proves the theorem.

Remark

Analogously to Theorem 2, under the hypotheses H(A), H(B), H(J), (H_0) , (H_1) , H(C) and $H(\Phi)$, we can establish the existence result for the optimal control problem of the form

$$\inf\{\Phi(y,u):y\in S(u),u\in U_{ad}\},$$

where U_{ad} is a nonempty, weakly compact subset of \mathcal{U} (a set of admissible controls). In this case having a minimizing sequence $\{(y_n,u_n)\}$, $y_n \in S(u_n)$, $u_n \in U_{ad}$, we may assume that

$$u_n \longrightarrow u$$
 weakly in ${\mathcal U}$ and $u \in U_{ad}$.

Then we proceed as in the proof of Theorem 2.

Example of a cost functional

The hypothesis $H(\Phi)$ incorporates the quadratic cost functionals studied by Lions (1971) and by Ha and Nakagiri (1997). In particular, we may take a combination of these functionals, namely

$$egin{align} \Phi(y,u) &= arrho_1 \, \|y(T) - y_d\|_H^2 + arrho_2 \, \|y'(T) - \overline{y_d}\|_H^2 + \ &+ arrho_3 \int_0^T \|\mathcal{O}_1 y(t) - z_d(t)\|_H^2 \, dt + \ &+ arrho_4 \int_0^T \|\mathcal{O}_2 y'(t) - \overline{z_d}(t)\|_H^2 \, dt + \ &+ arrho_5 \int_0^T \langle Ru(t), u(t)
angle_{Y^* imes Y} \, dt, \ \end{aligned}$$

where $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{L}(H)$ are observation operators, $R \in \mathcal{L}(Y,Y^*)$ is a positive defined and symmetric operator on Y, y_d , $\overline{y_d} \in H$, z_d , $\overline{z_d} \in \mathcal{H}$ are given elements (desired outputs) and $\varrho_i \geq 0$ $(i=1,\ldots,5)$ are some constants (weights).

A convergence result for inclusions

$$rac{H(C)_arepsilon}{L^2(0,T;\mathcal{L}(V,V^*))}$$
 and $C_arepsilon o C$ in $L^2(0,T;\mathcal{L}(V,V^*))$.

PROBLEMs $P_arepsilon$: find $y_arepsilon \in \mathcal{V}$ such that $y_arepsilon' \in \mathcal{W}$ and

$$egin{cases} y_arepsilon''(t) + A(t,y_arepsilon'(t)) + By_arepsilon(t) + \int_0^t C_arepsilon(t-s)y_arepsilon(s)\,ds + \ + \gamma^*\,\partial J(t,\gamma y'(t))
otin f(t) + E(t)u(t) ext{ a.e. } t \ y_arepsilon(0) = y_0, \ \ y_arepsilon'(0) = y_1. \end{cases}$$

THEOREM 3. Assume that H(A), H(B), $H(C)_{\varepsilon}$, H(E), H(J), (H_0) , (H_1) , (H_2) hold and $u \in \mathcal{U}$. Then, the unique solution y_{ε} of Problems P_{ε} converges to the solution y of Problem P, i.e.

$$\lim_{arepsilon o 0} \left(\| y_arepsilon - y \|_{C(0,T;V)} + \| y_arepsilon' - y' \|_{C(0,T;H)} + \| y_arepsilon' - y' \|_{\mathcal{V}}
ight) = 0.$$

Vanishing relaxation operator

THEOREM 4. Assume the hypotheses of Theorem 3 and let $y_{\varepsilon} \in \mathcal{V}$ with $y_{\varepsilon}' \in \mathcal{W}$ be a unique solution of the problem

$$egin{cases} y_arepsilon''(t) + A(t,y_arepsilon'(t)) + B(t,y_arepsilon(t)) + arepsilon \int_0^t C(t-s)y_arepsilon(s)\,ds + \ + \gamma^*\,\partial J(t,\gamma y_arepsilon'(t))
otin f(t) + E(t)u(t) ext{ a.e. } t \ y_arepsilon(0) = y_0, \;\; y_arepsilon'(0) = y_1. \end{cases}$$

for $\varepsilon > 0$. Then, y_{ε} converges to y in the following sense

$$\lim_{arepsilon o 0}\left(\|y_arepsilon-y\|_{C(0,T;V)}+\|y_arepsilon'-y'\|_{C(0,T;H)}+\|y_arepsilon'-y'\|_{\mathcal{V}}
ight)=0,$$

where $y \in \mathcal{V}$ with $y' \in \mathcal{W}$ is the unique solution of the problem

$$\left\{egin{array}{l} y''(t)+A(t,y'(t))+By(t)+\gamma^*\,\partial J(t,\gamma y'(t))
otin f(t)+E(t)u(t) \ y(0)=y_0,\ \ y'(0)=y_1. \end{array}
ight.$$

Proof. $C_{\varepsilon} = \varepsilon C$.

Asymptotic behavior of optimal solutions

$$egin{aligned} (\operatorname{CP})_{arepsilon} \ & \begin{cases} \Phi(y_{arepsilon},u) = l(y_{arepsilon}(T),y_{arepsilon}'(T)) + \int_0^T F\left(t,y_{arepsilon}(t),y_{arepsilon}'(t),u(t)
ight) \ dt \ & \\ \Phi(y_{arepsilon},u) \longrightarrow \inf =: m_{arepsilon} \ & \\ \text{where } u(t) \in U(t) \text{ a.e. } t,u(\cdot) \text{ is measurable, } y_{arepsilon} \in S_{arepsilon}(u). \end{aligned}$$

 $S_{arepsilon}(u)$ is the set of solutions of Problem $P_{arepsilon}$ corresp. to a control u.

THEOREM 5. Assume hypotheses $H(A), H(B), H(C), H(E), H(J), (H_0), (H_1), (H_2), H(\Phi)$ and H(U). Then

- (1) for every $\varepsilon>0$, the control problem $(\operatorname{CP})_{\varepsilon}$ has at least one optimal solution $(u_{\varepsilon}^*,y_{\varepsilon}^*)$ with minimal value $m_{\varepsilon}=\Phi(u_{\varepsilon}^*,y_{\varepsilon}^*)$;
- (2) there exists a subsequence of $\{(u_{\varepsilon}^*, y_{\varepsilon}^*)\}$ which converges weakly to (u^*, y^*) is an optimal solution to (CP).
- (3) We have the convergence of minimal values $m_{\varepsilon} \to m$, as $\varepsilon \to 0$.

Summary

- the Bolza distributed parameter control problem
- ullet necessary condition $(oldsymbol{H}(\Phi))$ for existence of optimal solution to (CP)
- other possibility: the time optimal control, the maximum stay control problems ect.
- our efforts are of importance in the development of control theory for a large class of mechanical and engineering problems involving nonmonotone and multivalued relations

References

[1] S. Migorski, A. Ochal, M. Sofonea, *Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Mathematical Models and Methods in Applied Sciences* **18** (2008), 271–290.

Problem: Find $y \in \mathcal{V}$ with $y' \in \mathcal{W}$ such that $y''(t) + A(t,y'(t)) + By(t) + \int_0^t C(t-s)y(s) \, ds + \\ + \gamma^* \, \partial J(t,\gamma y(t)) \ni f(t) \, \text{ a.e. } t \in (0,T),$

$$y(0) = y_0, \ y'(0) = y_1.$$

[2] S. Migorski, A. Ochal, M. Sofonea, *History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics*, *Nonlineal Analysis RWA* **12** (2011), 3384–3396.

Problem: Find $y \in \mathcal{V}$ such that

 $A(t,y(t))+\mathcal{S}y(t)+\gamma^*\,\partial J(t,\gamma y(t))
i f(t)$ a.e. $t\in(0,T)$.