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Problem setting

Let V and Z be separable Banach spaces and let H be a separable
Hilbert space. Suppose

VCZCHCZ CV”

with dense and continuous embeddings and that V' C Z compactly.
Lety € L(Z, X), where X is a separable Banach space.

Define the spaces

VY = L*0,T;V),Z=L*0,T;Z), W={veV:v eV}

Consider the following second order evolution inclusion:
find y € V with ¥y’ € W such that

y'(t) + A(t, y'(t)) + By(t) + Sy(t)+
+ 7 0J(t,vy'(t)) 3 f(t) + E(t)u(t) ae. t € (0,T)

y(0) = yo, ¥'(0) =,

where y is a state (displacement) and u is a control.
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History-dependent operators

S: VY — V* and there exists Lg > 0 such that

t
1851(8) — Sya(t)|lv- < Ls / lys(s) — ya()llv ds
0
Yy, y2 € V, a.e.t € (0,T).

Examples

Sv(t) = R(/Ot v(s) ds—|—v0) VveV,Vte (0,7),

where R : V — V*is a Lipschitz continuous operator and vy € V.

Sv(t) = /Ot C(t—s)v(s)ds VveV,Vte (0,T),

where C' € L*(0,T; L(V,V™)).
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Physical setting

a T, I
I' = 012
Q)
gap=0 Tn Q:QX(O,T)
\_ I'c )
Vn
foundation

Q C R? open, bounded with Lipschitz boundary occupied by a de-

formable viscoelastic body
I' =Tp UI'y UTI'c mutually disjoint parts
I' - the potential contact surface

We suppose that the body is clamped on I'p, so the displacement field
vanishes there. Volume forces of density f; act in {2 and surface trac-

tions of density f, are applied on I''y.
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Problem formulation

Let y: Q — R? be the displacement vector, o: Q — S the stress
tensor and e(y) = (e;;(y)) = 3(¥i; + ;) the linearized strain
tensor, where 2,3 = 1,...,d. We employ the viscoelastic constitutive
relation

o(t) = A(t,e(y'(t))) + B(e(y(t))) + /0 C(t — s)e(y(s)) ds

where A, B and C are given constitutive functions. The contact problem
can be stated as follows

(y"(t) — divo(y(t),y'(t)) = fi(t) in Q
o(t) = Alt,e(y'(t)) + Be(y(?)))+
+ [, C(t — s)e(y(s)) ds in Q
}y=0 onI'p x (0,T)
on = f, on 'y x (0,T)
—o,(t) € 07,(x,t, y,u'(t)) on I'c X (0,T)
—o,(t) € 03, (x,t,y. (1)) on I'c X (0,T)
L Y¥(0) = %o, ¥'(0) = in Q.
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Clarke subdifferential

Given a locally Lipschitz function h: X — R, where X is a Banach
space, we define (Clarke (1983)):

e the generalized directional derivativeof h at x € X in the direction
v € X by

h Av) — h
h°(x;v) = lim sup (y + Av) (y)

y—x, A0 A

e the generalized gradientof h at by dh(x), is a subset of a dual
space X * given by

Oh(x) = {¢ € X* : h?(x;v) > ((, V) . x forallv € X}.
The locally Lipschitz function h is called regular (in the sense of Clarke)

atx € X iffor all v € X the one-sided directional derivative h'(x; v)
exists and satisfies h?(x;v) = h/(x;v) forallv € X.
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Example

Given 3 € L* (R) we define the multivalued map B:R — 2% which is
obtained from 3 by filling in the jump procedure as follows

B(&) = [B(€),B(&)] C R,

where

B(&) = lim essinf 3(t), B(¢) = lim esssup 3(t).

d—0t |t—€£|<é d—0t It—€|<6

From Chang (1981), it is known that there exists a locally Lipschitz func-
tion 3: R — R determined (up to an additive constant) by the relation

i) = /Otﬁ(s) ds and

9j(t) C B(t)-
Additionaly, if lirgll B(t) exist for every £ € R, then we have
t—

dj(t) = B(t) for t € R.
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. [Winkler’s linear law J

k?()é'
(noncontact region) <—[destruction of support]
0 € / YN
[region where support is destroyed]

Nonmonotone diagram for the Winkler-type support
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Taking the above into consideration, the boundary condition given by
Winkler’s law can be written as

—0o, € 9j(y,) = B(y,) onTc,
where 3: R — R is of the form

t 0 it £<0
j(t)zfg(s)dsz Lkot? if 0<t<e
0 skoe? if t>e.

with
B: R — R such that
0 if ¢t<O0
B(t) = < kot if t € [0,¢)
0 if t>¢
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Nonmonotone laws

a) Force-displacement diagrams for laminated products

b) Force-displacement diagrams for glass fiber-reinforced epoxy lami-
nated composites

c) Ply stress-strain curve in a lamina with brittle behavior

d) Force-displacement diagram for a graphite-epoxy composite laminate
e) Force-displacement diagram for an aluminium-beryllium composite
beam

f) Scanlon’s diagram
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Variational formulation

We introduce the spaces V. = {v € H*(2;R?%) : v =0 onTp},
H = L*(;RY), H = L*(2;S), S* is the space of symmetric matri-
ces of order d.

Let A: (0, T) XV - V* B:V —- V*and C: (0,T) X V — V*
be defined by

(A(t, ), )y = (At e(n)), e(v))s foru,v € V, t € (0,T),
(Bu, v) vy = (B(e(u)),e(v))n foru,v € V,

(C(t)u, v)vxy = (C(t) e(u),e(v))y foru,v eV, te (0,T).
We consider a function f: (0, T) — V* given by

<.f(t)av>V*><V = <.f1(t)9 ’U>H + <f2(t),v>L2(I‘N;Rd)
forallv € Vandae. t € (0,T).
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Variational formulation
From the equation of motion and the Green formula, we get
(v (©)0) + (@(t), @) = (Fi(8), V) + [ o(O)w - vaT.
Taking into account the boundary conditions, we have

/Fa(t)u-vdI‘ — /FN fz(t)-vdI‘+/Fc (o, (t)v, + 0. (t) - v,) dT

From the definition of the Clarke subdifferential, we have

—o,(t)€ < g (x, t,y, (x,t);€) forall € € R,
_O-'T(t) /IS jg(mvta y;(mvt); 77) foralln € R,

Optimal control for history-dependent hviVorkshop Nemecka 2011



We obtain the following hemivariational inequality formulation:

find y: (0,T) — V suchthaty € V,y’ € W and

2

W' + Aty @) + By(t) + | Ot — s)y(s) ds, v)yervt

+/ (3o (st 9, (2, 8); v (%)) + 37 (25 ¢, o (2, t); v, (2))) AT >
I'c
> (f(t),v)y+xy for all v € V and ae.t

7\

L ¥(0) = yo, y'(0) = v

or equivalently

( (y"(t) + A(t,y'(t)) + By(t) + /Ot C(t — s)y(s)ds, v)yv«xv+

+J%(t, vy (t);7v) > (F(t);v)vexy for all v €V, ae. t

7\

( ¥(0) = yo, ¥'(0) =1,

where J: (0,T) X X — R, J(t,v) = [._j(z,t,v(x))dl with
j(watav) — j,,(a:,t, ’U,,) + jT(a:,t,vT).
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Abstract history-dependent evolution inclusion
PROBLEM P: findy € V with y’ € YV such that

y'(t) + AL, y'(¢)) + By(t) + Sy(t)+
+v*8J(t,vy'(t)) > f(t) + E(t)u(t) ae. t

y(0) = yo, ¥'(0) = y:.

DEFINITION. A function y € V is called a solution of Problem P if and
only if 4’ € VWV and there exists { € Z* such that

(y"(t) + A(t,y'(t)) + By(t) + Sy(t) + ¢(t) =
= f(t)+ E(t)u(t) ae. t

N\

C(t) e v*aJ(t,vy'(t)) ae. t

L ¥(0) = yo, ¥'(0) = yi.

Optimal control for history-dependent hviVorkshop Nemecka 2011



Hypotheses

H(A): A:(0,T) XV — V*issuch that

(i) A(+,v) is measurable on (0, T) forallv € V;

(i) A(t,-) is strongly monotone, i.e. (A(t,w) — A(t,v),w — v) >
m, ||lw — v||3 forallw, v € V, a.e. t € (0,T) with m; > 0;

(iii) ||A(t, v)||v- < a(t) + b||v]||y forallv € V,ae. t € (0, T) with
a € L?(0,T),a > 0,b > 0;

(iv) (A(t,v),v) > allv||; forallv € V,ae. t € (0,T)witha > 0.

H(B): B:V — V*isbounded, linear, monotone and symmetric.

H(S): &8:V — V*issuchthat 3Lg > 0 :

[SY1(t) — Sya(t)|lv- < LS/O ly1(s) — y2(s)|lv ds

Vyi, y2 €V, a.e.t € (0,T).
H(E): FE € L*~0,T;L(Y,V*))and Y is a separable reflexive
Banach space (the space of controls).
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Hypotheses

H(J): J:(0,T) x L*(T'¢; R%) — Ris a functional such that

(i) J(-,v) is measurable for all v € L*(T'¢c; R?);

(i) J(t,-) is locally Lipschitz for a.e. t € (0,T);

(iii) |8 (t, v)|[r2eseay < co (1 + [[vllp2@emas) for all v €
L*(To; R9), ae. t € (0, T) with ¢ > O;

(iv) JO(t, v; —v) < do (1 4+ [|v||z2@ere) for all v € L*(Teo; RY),
a.e. t € (0, T) with dy > O;

(V) (Zl — Z9, Wy — wz)Lz(FC;Rd) 2 —m2||w1 — w2||i2(FC;Rd) for all
zZ; € BJ(t, ’UJ,‘), w; € Lz(FC;Rd), 1 = ]_, 2,ae t e (O, T) with
mo Z 0.

(HO): fev*iyOGV!yleH

(Hy) : my > ma||y]]* ¢, where ||v]| = [|7||zz20me) and ¢ >
0 is an embedding constant of V' into Z.
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Existence and uniqueness result

THEOREM 1. Assume that H(A), H(B), H(S), H(E), H(J),
(H,), (H,) holdand u € U = L?*(0,T;Y). Then Problem P admits
a unique solution.

Idea of the proof:

e existence of unique solution for evolutionary inclusion without mem-
ory term
— regular initial data (i.e. y; € V)

— a standard reduction technique — an evolution inclusion of the first
order

— a surjectivity result for the sum of two operators: one operator is
closed, densely defined and maximal monotone, and the second
one is bounded, coercive and pseudomonotone w.r.t. the graph
norm topology of the domain of the first operator

— remove the restriction on the initial data a density argument
e a fixed point argument
(Theorem 2.1 in [Migorski, O., Sofonea, M3AS 2008]).
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Continuous dependence on a control variable

PROPOSITION Under hypotheses of Theorem 1 and the condition

(H2) : > 2TVT||C||r20,m:cv,v+),

if {u,} C U, u, — u weakly in U, then y, — y weakly in V
and y. — vy’ weakly in W, where y,, and y are unique solutions of
Problem P corresponding to u,, and wu, respectively.

Idea of the proof:
a priori estimate

|Ynllcory+ly,llw < €@+ [lyollv + llylla + [1F 11y + llwnlle)
with ¢ > 0 independent on n. []

A solution map

S:U > ur— S(u) C XA,
where X = {y € V : y’ € W}, hasaclosed graph in (w-U£) X (w-X)
- topology.

Optimal control for history-dependent hviVorkshop Nemecka 2011



Bolza optimal control problem for hvi

(CP)
B(y,u) = (D), YD) + [ F(Ey(0),yO,u) dt

®(y,u) — inf =:m

\

| where u(t) € U(t) ae. t € (0,T),u(-) is measurable, y € S(u)

S (u) is the set of solutions of Problem P corresponding to a control .

H(®): I: H x H — R is weakly Isc;
F:[0,T] x HXx HXY — RU{+o0} is measurable and:

(i) F(t,-,-,:) isseq.Iscon H x H X Y forae.t € (0,T),
(i) F (t,y,z,-) isconvexonY, forally,z € H and a.e. t,

(iii) thereexist M > 0,v € L'(0,T)s.t forally,z € Hu €Y
and a.e. t € (0,T), we have

F(t,y,z,u) 2 ¥(t) = M ([[ylla + |2]la + |lully) -
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HV): U:[0,T] — 2% \ {0} is a multifunction s.t. for all ¢ € [0, T'],
U (t) is a closed convex subset of Y and t — [[U (t)||y € L.

S ={w eU = L10, T;Y) : w(t) € U(t) a.e. t} is nonempty
[Hu, Papageorgiou (1997)].

By an admissible state—control pair (y, ) for (CP) we understood a pair
of a state function y (which solves Problem P) and a control function
u € S7. An admissible pair (y, ) is called an optimal solution to (CP)
if and only if ®(y,u) = m.
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Existence of optimal solution

THEOREM 2. If the hypotheses H(A), H(B), H(J), (H,), (H,),
(H), H(C), H(®) and H(U) hold, then the problem (CP)admits an
optimal solution.

Proof. Applying the direct method of the calculus of variations.

By Theorem 1, S(u) # O for all fixed u € U.

Let {(yn,u,)} € X X U be a minimizing sequence of admissible
state—control pairs for the problem (CP), i.e. y, € S(u,), u,(t) €
U(t) fora.e.t € (0,T) and HT D (Ypy Up) = M.

From the hypothesis H(U), u,, — wu weakly in i and u(t) € U(t)
for a.e. t.
From the a priori estimate, we get ||y,|lv < e1, ||[Y)llw < e with

c1, c; > 0 independent of n. So for a subsequence we have
Yy, — y weaklyinV and y — y' weaklyin W.

From Proposition 2 y € S(u). Hence (y,w) is an admissible state—
control pair.
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It is also an optimal solution.
In fact, using the compactness of the embedding VYW C “H, for a next

subsequence, we have
Yy, —y and y — y' bothin H.

Invoking now Theorem 2.1 of Balder (1987) we obtain that the cost func-
tional @ is sequentially lower semicontinuous on L*(0,T; H X H) X
(w—L?%0,T;Y)). So,

m < ®(y,u) < limjnf D (yp, u,) = m,

which proves the theorem. []
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Remark

Analogously to Theorem 2, under the hypotheses H(A), H(B),
H(J), (Hy), (H,), H(C) and H(®), we can establish the existence
result for the optimal control problem of the form

inf{®(y,u) : y € S(u),u € Uy},

where U, is a nonempty, weakly compact subset of U (a set of admis-
sible controls). In this case having a minimizing sequence {(y,,u,)},
Yn € S(uy,), u, € Uy, we may assume that

u, — u weaklyin U4 and u € U,,.

Then we proceed as in the proof of Theorem 2.
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Example of a cost functional

The hypothesis H (®) incorporates the quadratic cost functionals stud-
ied by Lions (1971) and by Ha and Nakagiri (1997). In particular, we
may take a combination of these functionals, namely

®(y,u) = o1 |[y(T) — vall?, + 02 |1V (T) — wall?, +
T
o / 10y (t) — za(t)||2, dit +
0

T
tou [ 10:/(®) — Z(®)l dt +
0

. / (Ru(t), u(t))yxy dt,

where O, O, € L(H) are observation operators, R € L(Y,Y ™) is
a positive defined and symmetric operatoron Y, Y4, yq € H, 24,24 €
‘H are given elements (desired outputs) and g; > 0 (z = 1,...,5)
are some constants (weights).

Optimal control for history-dependent hviVorkshop Nemecka 2011



A convergence result for inclusions
H(C). : C, C. € L*0,T;£L(V,V*)) and C. — C in
L2(0,T; L(V, V™).
PROBLEMs P.: find y. € V such thaty’ € W and

y. (1) + AL, y.(t)) + By.(t) + /0 C.(t — s)y.(s) ds +
\ + " 0J(t,vy'(¥)) 3 f(t) + E(t)u(t) ae ¢

| ¥-(0) = yo, y.(0) = y1.

THEOREM 3. Assume that H(A), H(B), H(C)., H(FE), H(J),
(Hy), (H,), (H,) hold and v € U. Then, the unique solution y. of
Problems P, converges to the solution y of Problem P, i.e.

!éi_f)% (”ye — Yllcorv) + 1Y, — ¥Y'llcorm + ||y, — y’||v) = 0.
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Vanishing relaxation operator

THEOREM 4. Assume the hypotheses of Theorem 3 and let y. € V
with ¢/ € WV be a unique solution of the problem
(

y. (t) + A(t, y.(¢)) + B(t,y:(t)) + ¢ /Ot C(t — s)y.(s)ds +
+v*0J(t,vy.(t)) © f(t) + E(t)u(t) ae. t

N\

\ Y:(0) = yo, y.(0) = y.
fore > 0. Then, y. converges to y in the following sense

lim (|ly. — yllcorv) + 19, = ¥llcorm + ly. — ¥'llv) =0,
where y € V with y’ € W is the unique solution of the problem

{ y'(t) + A(t,y'(t)) + By(t) +v*0J(t,vy'(t)) > f(t) + E(t)u(t
y(0) = yo, ¥'(0) = y1.

Proof. C. = eC.
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Asymptotic behavior of optimal solutions

(CP).

B(ye, u) = U(y-(T), y(T)) + / F (t,.(t), y.(t), u(t)) dt

P (y.,u) — inf =: m,

N\

| where u(t) € U(t) a.e. t, u(-) is measurable, y. € S.(u).

S.(u) is the set of solutions of Problem P. corresp. to a control u.

THEOREM 5. Assume hypotheses H(A), H(B), H(C), H(E),

H(J), (Hy), (H,), (Hs), H(®) and H(U). Then

(1) for every € > 0, the control problem (CP). has at least one optimal
solution (u?, y*) with minimal value m. = ®(u?, y’);

(2) there exists a subsequence of {(u’, y*)} which converges weakly
to (u*, y*) is an optimal solution to (CP).

(3) We have the convergence of minimal values m. — m, as e — 0.
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Summary

e the Bolza distributed parameter control problem
e necessary condition (H (®)) for existence of optimal solution to (CP)

e other possibility: the time optimal control, the maximum stay control
problems ect.

e our efforts are of importance in the development of control theory
for a large class of mechanical and engineering problems involving
nonmonotone and multivalued relations
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