Decompositions of contractions and power bounded operators

Vladimir Müller

We will present a survey of results concerning various canonical decompositions of Hilbert space contractions, or more generally, power bounded operators on Banach spaces.

We will discuss the following classical decompositions:

Theorem 1. (mean ergodic theorem) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n ||T^n|| < \infty$). Let $Y_1 = N(T - I)$ and $Z_1 = \overline{R(T - I)}$. Then Y_1, Z_1 are complemented T-invariant subspaces, $X = Y_1 \oplus Z_1$ and $Z_1 = \{x \in X : \lim_{n \to \infty} ||A_n x|| = 0\}$, where $A_n = n^{-1} \sum_{j=0}^{n-1} T^j$.

If T is a Hilbert space contraction, then the spaces Y_1, Z_1 are orthogonal.

Theorem 2. (Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_2, Z_2 are complemented T-invariant subspaces, $X = Y_2 \oplus Z_2$. The subspace Z_2 can be characterized as

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{j=0}^{n-1} |\langle T^j x, x^* \rangle| = 0 \text{ for all } x^* \in X^*$$
$$\Leftrightarrow D - \lim_{n \to \infty} \langle T^j x, x^* \rangle = 0 \text{ for all } x^* \in X^*$$

 \Leftrightarrow there exists a subsequence (n_k) such that $T^{n_k}x \to 0$ weakly,

where $D - \lim a_n = a$ means that there exists a subset $A \subset \mathbb{N}$ of density 1 such that $\lim_{n \in A} a_n = a$.

If T is a Hilbert space contraction, then the spaces Y_2, Z_2 are orthogonal and

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{j=0}^{n-1} |\langle T^j x, x \rangle| = 0.$$

Theorem 3. (Fuguel decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let

 $Z_3 = \{ x \in H : T^n x \to 0 \text{ weakly} \}$

and

 $Y_3 = \bigvee \{x \in H : \text{there is a subsequence } (n_k) \text{ and } y \in H \text{ with } T^{n_k}y \to x \text{ weakly} \}.$

Then Y_3, Z_3 are T-invariant subspaces and $H = Y_3 \oplus Z_3$ (orthogonal sum).

Theorem 4. (singular/absolutely continuous decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let Y_4 and Z_4 be the sets of all $x \in H$ such that there exists a singular (absolutely continuous) measure μ_x with

$$\langle p(T)x,x\rangle = \int p \,\mathrm{d}\mu_x$$

for all polynomials p. Then Y_4, Z_4 are orthogonal T-invariant subspaces and $H = Y_3 \oplus Z_3$.

Theorem 5. (unitary/completely non-unitary decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Then there are orthogonal *T*-invariant subspaces $Y_5, Z_5 \subset H$ such that $T|Y_5$ is unitary and $T|Z_5$ completely non-unitary.

Clearly for any Hilbert space contraction T we have $Y_1 \subset Y_2 \subset Y_3 \subset Y_4 \subset Y_5$ and $Z_1 \supset Z_2 \supset Z_3 \supset Z_4 \supset Z_5$.