Decompositions of contractions and power bounded operators

Vladimir Müller

We will present a survey of results concerning various canonical decompositions of Hilbert space contractions, or more generally, power bounded operators on Banach spaces.

We will discuss the following classical decompositions:
Theorem 1. (mean ergodic theorem) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\left.\sup _{n}\left\|T^{n}\right\|<\infty\right)$. Let $Y_{1}=N(T-I)$ and $Z_{1}=\overline{R(T-I)}$. Then Y_{1}, Z_{1} are complemented T-invariant subspaces, $X=Y_{1} \oplus Z_{1}$ and $Z_{1}=\left\{x \in X: \lim _{n \rightarrow \infty}\left\|A_{n} x\right\|=0\right\}$, where $A_{n}=n^{-1} \sum_{j=0}^{n-1} T^{j}$.

If T is a Hilbert space contraction, then the spaces Y_{1}, Z_{1} are orthogonal.
Theorem 2. (Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_{2}=\bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_{2}=\bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_{2}, Z_{2} are complemented T-invariant subspaces, $X=Y_{2} \oplus Z_{2}$. The subspace Z_{2} can be characterized as

$$
\begin{gathered}
x \in Z_{2} \Leftrightarrow \lim _{n \rightarrow \infty} n^{-1} \sum_{j=0}^{n-1}\left|\left\langle T^{j} x, x^{*}\right\rangle\right|=0 \text { for all } x^{*} \in X^{*} \\
\Leftrightarrow D-\lim _{n \rightarrow \infty}\left\langle T^{j} x, x^{*}\right\rangle=0 \text { for all } x^{*} \in X^{*}
\end{gathered}
$$

\Leftrightarrow there exists a subsequence $\left(n_{k}\right)$ such that $T^{n_{k}} x \rightarrow 0$ weakly,
where $D-\lim a_{n}=a$ means that there exists a subset $A \subset \mathbb{N}$ of density 1 such that $\lim _{n \in A} a_{n}=a$.

If T is a Hilbert space contraction, then the spaces Y_{2}, Z_{2} are orthogonal and

$$
x \in Z_{2} \Leftrightarrow \lim _{n \rightarrow \infty} n^{-1} \sum_{j=0}^{n-1}\left|\left\langle T^{j} x, x\right\rangle\right|=0 .
$$

Theorem 3. (Fuguel decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let

$$
Z_{3}=\left\{x \in H: T^{n} x \rightarrow 0 \text { weakly }\right\}
$$

and
$Y_{3}=\bigvee\left\{x \in H:\right.$ there is a subsequence $\left(n_{k}\right)$ and $y \in H$ with $T^{n_{k}} y \rightarrow x$ weakly $\}$.
Then Y_{3}, Z_{3} are T-invariant subspaces and $H=Y_{3} \oplus Z_{3}$ (orthogonal sum).
Theorem 4. (singular/absolutely continuous decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let Y_{4} and Z_{4} be the sets of all $x \in H$ such that there exists a singular (absolutely continuous) measure μ_{x} with

$$
\langle p(T) x, x\rangle=\int p \mathrm{~d} \mu_{x}
$$

for all polynomials p. Then Y_{4}, Z_{4} are orthogonal T-invariant subspaces and $H=Y_{3} \oplus Z_{3}$.
Theorem 5. (unitary/completely non-unitary decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Then there are orthogonal T-invariant subspaces $Y_{5}, Z_{5} \subset H$ such that $T \mid Y_{5}$ is unitary and $T \mid Z_{5}$ completely non-unitary.

Clearly for any Hilbert space contraction T we have $Y_{1} \subset Y_{2} \subset Y_{3} \subset Y_{4} \subset Y_{5}$ and $Z_{1} \supset Z_{2} \supset$ $Z_{3} \supset Z_{4} \supset Z_{5}$.

