REFLEXIVITY DEFECT OF THE KERNEL OF SOME ELEMENTARY OPERATORS

TINA RUDOLF

1. Introduction

Let \mathcal{X} be a finite dimensional complex Banach space and \mathcal{S} be a nonempty subset of $L(\mathcal{X})$, the space of all linear operators on \mathcal{X}. Let k be a positive integer. Define the k-reflexive cover of \mathcal{S} to be the space
(1)

$$
\operatorname{Ref}_{\mathrm{k}} \mathcal{S}=\left\{T \in L(\mathcal{X}): \forall \varepsilon>0, \forall x_{1}, \ldots, x_{k} \in \mathcal{X}: \exists S \in \mathcal{S}:\left\|T x_{i}-S x_{i}\right\|<\varepsilon, \quad i=1, \ldots, k\right\} .
$$

One can see that $\operatorname{Ref}_{k} \mathcal{S}$ is a linear subspace of $L(\mathcal{X})$. A linear subspace \mathcal{S} is said to be k reflexive if $\operatorname{Ref}_{\mathrm{k}} \mathcal{S}=\mathcal{S}$. The k-reflexivity defect is defined by $\operatorname{rd}_{k}(\mathcal{S})=\operatorname{dim}\left(\operatorname{Ref}_{\mathrm{k}} \mathcal{S}\right)-\operatorname{dim}(\mathcal{S})$. It is easy to see that the following lemma holds.

Lemma 1.1. Suppose that $\mathcal{X}=\mathcal{X}_{1} \oplus \ldots \oplus \mathcal{X}_{N}$ is a decomposition of \mathcal{X}. Let $\mathcal{S} \subseteq L(\mathcal{X})$ be a linear subspace and for each $S \in \mathcal{S}$ let $\left[S_{i j}\right]$ be the block matrix representing S with respect to the above decomposition of \mathcal{X}. For each pair of indices i, j denote by $\mathcal{S}_{i j}$ the subspace of $L\left(\mathcal{X}_{j}, \mathcal{X}_{i}\right)$ consisting of $S_{i j}$ defined above. Let $k \in \mathbb{N}$ be a positive integer. Then each $T \in \operatorname{Ref}_{k} \mathcal{S}$ has the block matrix representation $\left[T_{i j}\right]$ where $T_{i j} \in \operatorname{Ref}_{k} \mathcal{S}_{i j}$. For the k-reflexivity defect one has $\operatorname{rd}_{k}(\mathcal{S})=\sum_{i, j=1}^{N} \operatorname{rd}_{k}\left(\mathcal{S}_{i j}\right)$; in particular, \mathcal{S} is reflexive if and only if $\mathcal{S}_{i j}$ is reflexive for every $i, j \in\{1, \ldots, N\}$.

Let $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ be arbitrary k-tuples of operators on \mathcal{X}. The elementary operator on $L(\mathcal{X})$ with coefficients $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ is defined by

$$
\begin{equation*}
\Delta(T)=B_{1} T A_{1}+B_{2} T A_{2}+\ldots+B_{k} T A_{k}, \quad(T \in L(\mathcal{X})) . \tag{2}
\end{equation*}
$$

It is easy to see that the kernel of Δ is a k-reflexive subspace of $L(\mathcal{X})$, i.e., $\operatorname{rd}_{k}(\operatorname{ker} \Delta)=0$. Hence, it is reasonable to ask whether $\operatorname{rd}_{j}(\operatorname{ker} \Delta)$ can be determined for $j<k$. In what follows, we are interested in the 1-reflexivity defect of the kernel of elementary operators of the form $\Delta(T)=B_{1} T A_{1}-B_{2} T A_{2}, T \in L(\mathcal{X})$, where A_{1}, A_{2} and B_{1}, B_{2} are linearly independent. To shorten the notation we will write $\operatorname{rd}(\operatorname{ker} \Delta)$ instead of $\operatorname{rd}_{1}(\operatorname{ker} \Delta)$. In Section 2 we consider some special types of such an elementary operator. In Section 3 we are dealing with the images of some special types of elementary operators.

2. Elementary operators of length 2

Because the k-reflexivity defect is preserved by similarity transformations, one can assume that $\mathcal{X}=\mathbb{C}^{n}$ where $n \in \mathbb{N}$. Thus, $L(\mathcal{X})$ may be identified with \mathbb{M}_{n}, the algebra of all n-by- n complex matrices. Let $A, B \in \mathbb{M}_{n}$ be arbitrary matrices. Define the generalized derivation on \mathbb{M}_{n} with coefficients A and B by $\delta(T)=B T-T A, T \in \mathbb{M}_{n}$. By a result of Zajac in [2], ker δ is reflexive if and only if all roots of the greatest common divisor of the minimal polynomials m_{A} and m_{B} of A and B, respectively, are simple.

For $k \in \mathbb{N}$, let J_{k} denote the Jordan block of order k, i.e.,

$$
J_{k}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Let $\left(\lambda_{1}+J_{p_{1}}\right) \oplus \ldots \oplus\left(\lambda_{N}+J_{p_{N}}\right)$ be the Jordan canonical form of A, where $\sum_{i=1}^{N} p_{i}=n$ and $\lambda_{1}, \ldots, \lambda_{N}$ are not necessarily distinct eigenvalues of A. Similarly, let $\left(\mu_{1}+J_{r_{1}}\right) \oplus \ldots \oplus\left(\mu_{M}+\right.$ $J_{r_{M}}$) be the Jordan canonical form of B, where $\sum_{i=1}^{M} r_{i}=n$ and μ_{1}, \ldots, μ_{M} are not necessarily distinct eigenvalues of B. Let $R(i, j)$ be a nonnegative integer defined by

$$
R(i, j):=\left\{\begin{array}{cl}
\frac{1}{2} \min \left\{r_{i}, p_{j}\right\}\left(\min \left\{r_{i}, p_{j}\right\}-1\right) & \text { if } \mu_{i}=\lambda_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

The following, a little more general result than the one in [2], which has been mentioned above, can be obtained, cf. [1] and [3].
Proposition 2.1. With the above notation, the reflexivity defect of $\operatorname{ker} \delta$ can be expressed as

$$
\operatorname{rd}(\operatorname{ker} \delta)=\sum_{i=1}^{M} \sum_{j=1}^{N} R(i, j)
$$

In particular, $\operatorname{ker} \delta$ is a reflexive space if and only if $\operatorname{deg}\left(\operatorname{gcd}\left(m_{A}(z), m_{B}(z)\right)\right) \leq 1$.
Let $A, B \in \mathbb{M}_{n}$ be as before and let ϵ be the elementary operator on \mathbb{M}_{n} defined by $\epsilon(T)=$ $B T A-T, T \in \mathbb{M}_{n}$. Then the following holds.
Proposition 2.2. If $1 \notin \sigma(A) \sigma(B)$, then $\operatorname{ker} \epsilon$ is reflexive. Otherwise

$$
\operatorname{rd}(\operatorname{ker} \epsilon)=\sum_{\mu_{i} \lambda_{j}=1} \frac{1}{2} \min \left\{r_{i}, p_{j}\right\}\left(\min \left\{r_{i}, p_{j}\right\}-1\right)
$$

Proof. Since A is similar to $\left(\lambda_{1}+J_{p_{1}}\right) \oplus \ldots \oplus\left(\lambda_{N}+J_{p_{N}}\right)$ and B is similar to $\left(\mu_{1}+J_{r_{1}}\right) \oplus$ $\ldots \oplus\left(\mu_{M}+J_{r_{M}}\right)$ Lemma 1.1 yields that $\operatorname{rd}(\operatorname{ker} \epsilon)=\sum_{i=1}^{M} \sum_{j=1}^{N} \operatorname{rd}\left(\operatorname{ker} \epsilon_{i j}\right)$, where $\epsilon_{i j}(T)=$ $\left(\mu_{i}+J_{r_{i}}\right) T\left(\lambda_{j}+J_{p_{j}}\right)-T$ is the elementary operator acting on the space of r_{i}-by- p_{j} matrices. If T satisfies the equation $\left(\mu_{i}+J_{r_{i}}\right) T\left(\lambda_{j}+J_{p_{j}}\right)=T$, then T is an eigenvector of the Kronecker product $\left(\lambda_{j}+J_{p_{j}}\right)^{\mathrm{T}} \otimes\left(\mu_{i}+J_{r_{i}}\right)$ at eigenvalue 1. Since $\sigma\left(\left(\lambda_{j}+J_{p_{j}}\right)^{\mathrm{T}} \otimes\left(\mu_{i}+J_{r_{i}}\right)\right)=\left\{\lambda_{j} \mu_{i}\right\}$ we can conclude that if $\lambda_{j} \mu_{i} \neq 1$, then $\operatorname{ker} \epsilon_{i j}=\{0\}$. Otherwise, if $\lambda_{j} \mu_{i}=1$, then $\mu_{i}+J_{r_{i}}$ and $\lambda_{j}+J_{p_{j}}$ are invertible and hence $\operatorname{ker} \epsilon_{i j}=\operatorname{ker} \tilde{\epsilon}_{i j}$, where $\tilde{\epsilon}_{i j}$ is a generalized derivation of the form $\tilde{\epsilon}_{i j}(T)=\left(\mu_{i}+J_{r_{i}}\right) T-T\left(\lambda_{j}+J_{p_{j}}\right)^{-1}$. Since inverting matrices preserves sizes of Jordan blocks the result follows by Proposition 2.1.

3. On k-REFLEXIVITY DEFECT OF THE IMAGE OF SOME ELEMENTARY OPERATORS

Let $A, B \in \mathbb{M}_{n}$ be arbitrary matrices and let τ be an elementary operator defined by $\tau(T)=B T A$ for $T \in \mathbb{M}_{n}$. It is easy to see that the kernel and the image of τ are reflexive spaces. Considering this and the fact that the kernel of an elementary operator of the form (2) is k-reflexive one asks whether the same holds for image of such an operator. We will show that this is not the case even if Δ is a generalized derivation. First we introduce some notation. The annihilator of a nonempty subset $\mathcal{S} \subseteq \mathbb{M}_{n}$ is defined by $\mathcal{S}_{\perp}=\left\{C \in \mathbb{M}_{n}\right.$: $\operatorname{tr}(C S)=0$ for all $S \in \mathcal{S}\}$, where $\operatorname{tr}(\cdot)$ is the trace functional.

Lemma 3.1. Let Δ be an elementary operator on \mathbb{M}_{n} with coefficients $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$, defined by $\Delta(T)=B_{1} T A_{1}+B_{2} T A_{2}+\ldots+B_{k} T A_{k}$. Then there exists an elementary operator $\tilde{\Delta}$ such that $(\operatorname{im} \Delta)_{\perp}=\operatorname{ker} \tilde{\Delta}$.

Proof. Define $\tilde{\Delta}(T)=A_{1} T B_{1}+\ldots+A_{k} T B_{k}$ for $T \in \mathbb{M}_{n}$. If T is an arbitrary matrix, then $\operatorname{tr}(\Delta(T) C)=\operatorname{tr}\left(T\left(A_{1} C B_{1}+\ldots+A_{k} C B_{k}\right)\right)$ and therefore $C \in(\operatorname{im} \Delta) \perp$ if and only if $\tilde{\Delta}(C) \in\left(\mathbb{M}_{n}\right)_{\perp}=\{0\}$, that is, $C \in \operatorname{ker} \tilde{\Delta}$.
Denote by F_{k} the set of elements in \mathbb{M}_{n} of rank k or less. It is well known that $\operatorname{Ref}_{\mathrm{k}} \mathcal{S}=$ $\left(\mathcal{S}_{\perp} \cap F_{k}\right)_{\perp}$. In the following example we show that there exists a generalized derivation δ on \mathbb{M}_{3} such that im δ is not 2-reflexive.

Example 3.2. Define $\delta(T)=J_{3} T-T J_{3}$ for $T \in \mathbb{M}_{3}$. Obviously, im δ is 3-reflexive. By Lemma 3.1, we get

$$
(\operatorname{im} \delta)_{\perp}=\left\{\left(\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right): a, b, c \in \mathbb{C}\right\}
$$

Since $(\operatorname{im} \delta)_{\perp} \cap F_{2} \subsetneq(\operatorname{im} \delta)_{\perp}$ we have $\operatorname{im} \delta \subsetneq \operatorname{Ref}_{2}(\operatorname{im} \delta)$ and thus, by (1), $\operatorname{im} \delta$ is not 2-reflexive. Moreover, we have $\operatorname{rd}(\operatorname{im} \delta)=2$ and $\operatorname{rd}_{2}(\operatorname{im} \delta)=1$.

References

[1] J. Bračič, B. Kuzma: Reflexivity defect of spaces of linear operators, Linear Algebra Appl. 430 (2009), 344-359.
[2] M. Zajac: On reflexivity and hyperreflexivity of some spaces of intertwining operators, Math. Bohem. 133 (2008), 75-83.
[3] M. Zajac: Reflexivity of intertwining operators in finite dimensional spaces, unpublished.
University of Ljubljana, IMFM, Jadranska ul. 19, 1000 Ljubljana, Slovenia
E-mail address: tina.malec@fmf.uni-lj.si

