REFLEXIVITY DEFECT OF THE KERNEL OF SOME ELEMENTARY OPERATORS

TINA RUDOLF

1. INTRODUCTION

Let \mathcal{X} be a finite dimensional complex Banach space and \mathcal{S} be a nonempty subset of $L(\mathcal{X})$, the space of all linear operators on \mathcal{X} . Let k be a positive integer. Define the k-reflexive cover of \mathcal{S} to be the space

(1)

 $\operatorname{Ref}_{k} \mathcal{S} = \{ T \in L(\mathcal{X}) : \forall \varepsilon > 0, \forall x_{1}, \dots, x_{k} \in \mathcal{X} : \exists S \in \mathcal{S} : \|Tx_{i} - Sx_{i}\| < \varepsilon, \ i = 1, \dots, k \}.$

One can see that $\operatorname{Ref}_k S$ is a linear subspace of $L(\mathcal{X})$. A linear subspace S is said to be k-reflexive if $\operatorname{Ref}_k S = S$. The k-reflexivity defect is defined by $\operatorname{rd}_k(S) = \dim(\operatorname{Ref}_k S) - \dim(S)$. It is easy to see that the following lemma holds.

Lemma 1.1. Suppose that $\mathcal{X} = \mathcal{X}_1 \oplus \ldots \oplus \mathcal{X}_N$ is a decomposition of \mathcal{X} . Let $\mathcal{S} \subseteq L(\mathcal{X})$ be a linear subspace and for each $S \in \mathcal{S}$ let $[S_{ij}]$ be the block matrix representing S with respect to the above decomposition of \mathcal{X} . For each pair of indices i, j denote by \mathcal{S}_{ij} the subspace of $L(\mathcal{X}_j, \mathcal{X}_i)$ consisting of S_{ij} defined above. Let $k \in \mathbb{N}$ be a positive integer. Then each $T \in \operatorname{Ref}_k \mathcal{S}$ has the block matrix representation $[T_{ij}]$ where $T_{ij} \in \operatorname{Ref}_k \mathcal{S}_{ij}$. For the k-reflexivity defect one has $\operatorname{rd}_k(\mathcal{S}) = \sum_{i,j=1}^N \operatorname{rd}_k(\mathcal{S}_{ij})$; in particular, \mathcal{S} is reflexive if and only if \mathcal{S}_{ij} is reflexive for every $i, j \in \{1, \ldots, N\}$.

Let (A_1, \ldots, A_k) and (B_1, \ldots, B_k) be arbitrary k-tuples of operators on \mathcal{X} . The elementary operator on $L(\mathcal{X})$ with coefficients (A_1, \ldots, A_k) and (B_1, \ldots, B_k) is defined by

(2)
$$\Delta(T) = B_1 T A_1 + B_2 T A_2 + \ldots + B_k T A_k, \quad (T \in L(\mathcal{X})).$$

It is easy to see that the kernel of Δ is a k-reflexive subspace of $L(\mathcal{X})$, i.e., $\operatorname{rd}_k(\ker \Delta) = 0$. Hence, it is reasonable to ask whether $\operatorname{rd}_j(\ker \Delta)$ can be determined for j < k. In what follows, we are interested in the 1-reflexivity defect of the kernel of elementary operators of the form $\Delta(T) = B_1TA_1 - B_2TA_2, T \in L(\mathcal{X})$, where A_1, A_2 and B_1, B_2 are linearly independent. To shorten the notation we will write $\operatorname{rd}(\ker \Delta)$ instead of $\operatorname{rd}_1(\ker \Delta)$. In Section 2 we consider some special types of such an elementary operators.

2. Elementary operators of length 2

Because the k-reflexivity defect is preserved by similarity transformations, one can assume that $\mathcal{X} = \mathbb{C}^n$ where $n \in \mathbb{N}$. Thus, $L(\mathcal{X})$ may be identified with \mathbb{M}_n , the algebra of all n-by-n complex matrices. Let $A, B \in \mathbb{M}_n$ be arbitrary matrices. Define the generalized derivation on \mathbb{M}_n with coefficients A and B by $\delta(T) = BT - TA, T \in \mathbb{M}_n$. By a result of Zajac in [2], ker δ is reflexive if and only if all roots of the greatest common divisor of the minimal polynomials m_A and m_B of A and B, respectively, are simple. For $k \in \mathbb{N}$, let J_k denote the Jordan block of order k, i.e.,

$$J_k = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Let $(\lambda_1 + J_{p_1}) \oplus \ldots \oplus (\lambda_N + J_{p_N})$ be the Jordan canonical form of A, where $\sum_{i=1}^N p_i = n$ and $\lambda_1, \ldots, \lambda_N$ are not necessarily distinct eigenvalues of A. Similarly, let $(\mu_1 + J_{r_1}) \oplus \ldots \oplus (\mu_M + J_{r_M})$ be the Jordan canonical form of B, where $\sum_{i=1}^M r_i = n$ and μ_1, \ldots, μ_M are not necessarily distinct eigenvalues of B. Let R(i, j) be a nonnegative integer defined by

$$R(i, j) := \begin{cases} \frac{1}{2} \min\{r_i, p_j\} (\min\{r_i, p_j\} - 1) & \text{if } \mu_i = \lambda_j \\ 0 & \text{otherwise.} \end{cases}$$

The following, a little more general result than the one in [2], which has been mentioned above, can be obtained, cf. [1] and [3].

Proposition 2.1. With the above notation, the reflexivity defect of ker δ can be expressed as

$$rd(\ker \delta) = \sum_{i=1}^{M} \sum_{j=1}^{N} R(i, j)$$

In particular, ker δ is a reflexive space if and only if deg $(\gcd(m_A(z), m_B(z))) \leq 1$.

Let $A, B \in \mathbb{M}_n$ be as before and let ϵ be the elementary operator on \mathbb{M}_n defined by $\epsilon(T) = BTA - T, T \in \mathbb{M}_n$. Then the following holds.

Proposition 2.2. If $1 \notin \sigma(A) \sigma(B)$, then ker ϵ is reflexive. Otherwise

rd (ker
$$\epsilon$$
) = $\sum_{\mu_i \lambda_j = 1} \frac{1}{2} \min\{r_i, p_j\} (\min\{r_i, p_j\} - 1).$

Proof. Since A is similar to $(\lambda_1 + J_{p_1}) \oplus \ldots \oplus (\lambda_N + J_{p_N})$ and B is similar to $(\mu_1 + J_{r_1}) \oplus \ldots \oplus (\mu_M + J_{r_M})$ Lemma 1.1 yields that $\operatorname{rd}(\ker \epsilon) = \sum_{i=1}^M \sum_{j=1}^N \operatorname{rd}(\ker \epsilon_{ij})$, where $\epsilon_{ij}(T) = (\mu_i + J_{r_i}) T (\lambda_j + J_{p_j}) - T$ is the elementary operator acting on the space of r_i -by- p_j matrices. If T satisfies the equation $(\mu_i + J_{r_i}) T (\lambda_j + J_{p_j}) = T$, then T is an eigenvector of the Kronecker product $(\lambda_j + J_{p_j})^T \otimes (\mu_i + J_{r_i})$ at eigenvalue 1. Since $\sigma ((\lambda_j + J_{p_j})^T \otimes (\mu_i + J_{r_i})) = \{\lambda_j \mu_i\}$ we can conclude that if $\lambda_j \mu_i \neq 1$, then ker $\epsilon_{ij} = \{0\}$. Otherwise, if $\lambda_j \mu_i = 1$, then $\mu_i + J_{r_i}$ and $\lambda_j + J_{p_j}$ are invertible and hence ker $\epsilon_{ij} = \ker \tilde{\epsilon}_{ij}$, where $\tilde{\epsilon}_{ij}$ is a generalized derivation of the form $\tilde{\epsilon}_{ij}(T) = (\mu_i + J_{r_i})T - T(\lambda_j + J_{p_j})^{-1}$. Since inverting matrices preserves sizes of Jordan blocks the result follows by Proposition 2.1.

3. On k-reflexivity defect of the image of some elementary operators

Let $A, B \in \mathbb{M}_n$ be arbitrary matrices and let τ be an elementary operator defined by $\tau(T) = BTA$ for $T \in \mathbb{M}_n$. It is easy to see that the kernel and the image of τ are reflexive spaces. Considering this and the fact that the kernel of an elementary operator of the form (2) is k-reflexive one asks whether the same holds for image of such an operator. We will show that this is not the case even if Δ is a generalized derivation. First we introduce some notation. The annihilator of a nonempty subset $S \subseteq \mathbb{M}_n$ is defined by $S_{\perp} = \{C \in \mathbb{M}_n : \text{tr}(CS) = 0 \text{ for all } S \in S\}$, where tr (\cdot) is the trace functional.

Lemma 3.1. Let Δ be an elementary operator on \mathbb{M}_n with coefficients (A_1, \ldots, A_k) and (B_1, \ldots, B_k) , defined by $\Delta(T) = B_1TA_1 + B_2TA_2 + \ldots + B_kTA_k$. Then there exists an elementary operator $\tilde{\Delta}$ such that $(\operatorname{im} \Delta)_{\perp} = \operatorname{ker} \tilde{\Delta}$.

Proof. Define $\Delta(T) = A_1TB_1 + \ldots + A_kTB_k$ for $T \in \mathbb{M}_n$. If T is an arbitrary matrix, then tr $(\Delta(T)C) = \text{tr}(T(A_1CB_1 + \ldots + A_kCB_k))$ and therefore $C \in (\text{im }\Delta)_{\perp}$ if and only if $\tilde{\Delta}(C) \in (\mathbb{M}_n)_{\perp} = \{0\}$, that is, $C \in \ker \tilde{\Delta}$.

Denote by F_k the set of elements in \mathbb{M}_n of rank k or less. It is well known that $\operatorname{Ref}_k S = (S_{\perp} \cap F_k)_{\perp}$. In the following example we show that there exists a generalized derivation δ on \mathbb{M}_3 such that im δ is not 2-reflexive.

Example 3.2. Define $\delta(T) = J_3T - TJ_3$ for $T \in \mathbb{M}_3$. Obviously, im δ is 3-reflexive. By Lemma 3.1, we get

$$(\operatorname{im} \delta)_{\perp} = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.$$

Since $(\operatorname{im} \delta)_{\perp} \cap F_2 \subsetneq (\operatorname{im} \delta)_{\perp}$ we have $\operatorname{im} \delta \subsetneq \operatorname{Ref}_2(\operatorname{im} \delta)$ and thus, by (1), $\operatorname{im} \delta$ is not 2-reflexive. Moreover, we have $\operatorname{rd}(\operatorname{im} \delta) = 2$ and $\operatorname{rd}_2(\operatorname{im} \delta) = 1$.

References

- [1] J. Bračič, B. Kuzma: Reflexivity defect of spaces of linear operators, Linear Algebra Appl. **430** (2009), 344-359.
- [2] M. Zajac: On reflexivity and hyperreflexivity of some spaces of intertwining operators, Math. Bohem. 133 (2008), 75-83.
- [3] M. Zajac: Reflexivity of intertwining operators in finite dimensional spaces, unpublished.

UNIVERSITY OF LJUBLJANA, IMFM, JADRANSKA UL. 19, 1000 LJUBLJANA, SLOVENIA *E-mail address:* tina.malec@fmf.uni-lj.si