EXAMPLES OF NON-HYPERREFLEXIVE REFLEXIVE SPACES OF OPERATORS

MICHAL ZAJAC

1. INTRODUCTION AND PRELIMINARIES

Let $\mathcal{H}, \mathcal{H}'$ be complex separable Hilbert spaces and $\mathcal{L}(\mathcal{H}, \mathcal{H}')$ be the space of all bounded linear operators $\mathcal{H} \to \mathcal{H}'$. For $\mathcal{H} = \mathcal{H}'$ we shall write briefly $\mathcal{L}(\mathcal{H}, \mathcal{H}) = \mathcal{L}(\mathcal{H})$. The *reflexive* closure of $\mathcal{S} \subseteq \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is defined by

$$\operatorname{Ref} \mathcal{S} = \bigcap_{x \in \mathcal{H}} \{ T \in \mathcal{L}(\mathcal{H}, \mathcal{H}'); \quad Tx \in [\mathcal{S}x] \}$$

where [Sx] denotes the closed linear span of $Sx = \{Sx; S \in S\}$. For $T \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, let

$$d(T, \mathcal{S}) = \inf_{S \in \mathcal{S}} \|T - S\| = \inf_{S \in \mathcal{S}} \sup_{x \in \mathcal{H}, \|x\| \le 1} \|Tx - Sx\|$$

and

$$\alpha(T, \mathcal{S}) = \sup_{x \in \mathcal{H}, \|x\| \le 1} \inf_{S \in \mathcal{S}} \|Tx - Sx\|.$$

It is well-known [4, 8] that

- (i) $\alpha(T, S) \leq d(T, S)$ and
- (ii) Ref S is a WOT (weak operator topology) closed subspace of $\mathcal{L}(\mathcal{H}, \mathcal{H}')$.
- (iii) $\alpha(T, S) = \sup\{\|QTP\| : P, Q \text{ are orthogonal projections and } QSP = \{0\}\}.$
- (iv) $\alpha(T, S) = \sup\{|(Tx, y)| : ||x|| = ||y|| = 1, (Sx, y) = 0 \text{ for all } S \in S\}$

Definition 1.1. A WOT closed subspace $S \subseteq \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is said to be *reflexive* if Ref S = S and it is called *hyperreflexive* if there exists a constant $c \geq 1$ such that

(1)
$$d(T, S) \le c \alpha(T, S) \qquad \forall T \in \mathcal{L}(\mathcal{H}, \mathcal{H}').$$

The number $\kappa(\mathcal{S}) = \inf\{c \ge 1; c \text{ is satisfying } (1)\}$ is called the hyperreflexivity constant of \mathcal{S} .

A single operator $T \in \mathcal{L}(\mathcal{H})$ is (hyper)reflexive if so is the unital weakly closed algebra generated by T.

The reflexivity of subalgebras was studied for the first time in 1966 by D. Sarason [9]. The notion of reflexivity of algebras of operators was generalized to subspaces of operators by V.S. Shul'man [10]. The concept of hyperreflexivity for algebras was introduced in 1975, [1, 2] and generalized for subspaces in 1985 [6, 7].

It easy to see that every hyperreflexive linear space $S \subseteq \mathcal{L}(\mathcal{H})$ is reflexive. On the other hand, there are reflexive linear spaces of operators that are not hyperreflexive. The aim of this paper is to give a review of known examples of nonhyperreflexive reflexive spaces. In fact there is only a few such examples and we shall show that all of them can be viewed as modifications of the Kraus-Larson example [6].

First, let us recall the following results on hyperreflexivity of similar and unitary equivalent subspaces of operators [3].

Proposition 1.2. Let \mathcal{X} and \mathcal{Y} be complex Banach spaces and let $S \subseteq \mathcal{L}(\mathcal{X})$ be a hyperreflexive subspace of operators. If $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $B \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ are invertible operators, then $ASB \subseteq \mathcal{L}(\mathcal{Y})$ is a hyperreflexive subspace and

$$\frac{1}{\|A\| \|B\| \|A^{-1}\| \|B^{-1}\|} \kappa(\mathcal{S}) \le \kappa(A\mathcal{S}B) \le \|A\| \|B\| \|A^{-1}\| \|B^{-1}\| \kappa(\mathcal{S}).$$

Supported by the grant G-1/0021/10 of the Ministry of Education of the Slovak Republic.

Corollary 1.3. Let \mathcal{H} be a complex Hilbert space and $\mathcal{S} \subseteq \mathcal{L}(\mathcal{H})$ be a hyperreflexive linear space. If U and V are unitary operators on \mathcal{H} , then the space $U\mathcal{S}V$ is hyperreflexive and $\kappa(U\mathcal{S}V) = \kappa(\mathcal{S})$.

All known examples of non-hyperreflexive reflexive spaces are direct sum of hyperreflexive subspaces. In their constructions the following result (see, e.g. [5]) is used:

Theorem 1.4. For $n \in \mathbb{N}$ let \mathcal{H}_n be a Hilbert space and let $\mathcal{S}_n \subset \mathcal{L}(\mathcal{H}_n)$ be a subspace. Then $\mathcal{S} = \bigoplus_{n=1}^{\infty} \mathcal{S}_n$ is hyperreflexive if and only if all \mathcal{S}_n are hyperreflexive and there is K > 0 such that $\kappa(\mathcal{S}_n) \leq K$ for all $n \in \mathbb{N}$.

2. KRAUS-LARSON EXAMPLE

Now we are going to describe the first known example of non-hyperreflexive reflexive space [6]. Let H_2 be a two-dimensional Hilbert space with orthonormal basis $\{e_1, e_2\}$. Fix $0 < \varepsilon < 1/3$ and put $u_1 = e_1$, $u_2 = e_1 + \varepsilon e_2$.

Lemma 2.5. Let $0 < \varepsilon < 1/3$, and let

$$\mathcal{S}_{arepsilon} = \left\{ S_{\lambda,\mu} = \left(egin{smallmatrix} 0 & \lambda \ \mu & -(\lambda+\mu)/arepsilon \end{array}
ight): \ \lambda,\mu\in\mathbb{C}
ight\} \,.$$

Then $\mathcal{S}_{\varepsilon}$ is a hyperreflexive subspace of $\mathcal{L}(H_2)$ with

(2)
$$\kappa(\mathcal{S}) \ge \frac{1}{3\varepsilon}$$
.

Using Corollary 1.3 and the following theorem (2) can be improved.

Theorem 2.6 (S. Tosaka [12]). Let $\mathcal{H} = \mathbb{C}^2$ and let \mathcal{L} , \mathcal{M} be one-dimensional subspaces of \mathcal{H} such that $\mathcal{L} + \mathcal{M} = \mathcal{H}$. Denote $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\} = \{T \in B(\mathcal{H}); T\mathcal{L} \subseteq \mathcal{L} \text{ and } T\mathcal{M} \subseteq \mathcal{M}\}$. Thus, $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ is the algebra of all operators in $B(\mathcal{H})$ that leave \mathcal{L} and \mathcal{M} invariant. If the angle φ between \mathcal{L} and \mathcal{M} is not zero, then $\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}$ is hyperreflexive and its hyperreflexivity constant is $\kappa(\operatorname{Alg}\{\mathcal{L}, \mathcal{M}\}) = \frac{1}{\sin \varphi}$.

Lemma 2.7. Under the notation of Lemma 2.5 the following estimation holds.

(3)
$$\kappa(\mathcal{S}_{\varepsilon}) = \frac{\sqrt{1+\varepsilon^2}}{\varepsilon} > \frac{1}{\varepsilon}.$$

Proof. Observe that $U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is unitary and for $\forall \lambda, \mu \in \mathbb{C}$

$$US_{\lambda,\mu} = U \begin{pmatrix} 0 & \lambda \\ \mu & -(\lambda+\mu)/\varepsilon \end{pmatrix} = \begin{pmatrix} -\mu & (\lambda+\mu)/\varepsilon \\ 0 & \lambda \end{pmatrix}.$$

This means that $US_{\varepsilon} = Alg\{u_1, u_2\}, u_1 = e_1, u_2 = e_1 + \varepsilon e_2$, and by Theorem 2.6 and Corollary 1.3

$$\kappa(\mathcal{S}_{\varepsilon}) = \frac{1}{\sin\varphi}$$

where $\cos \varphi = \frac{(u_1, u_2)}{\|u_1\| \|u_2\|} = \frac{1}{\sqrt{1+\varepsilon^2}}$. Consequently $\sin \varphi = \sqrt{1 - \cos^2 \varphi} = \frac{\varepsilon}{\sqrt{1+\varepsilon^2}}$. From this (3) follows easily.

Now putting $S_n = S_{1/n}$, $\mathcal{H}_n = \mathbb{C}^2$, $\mathcal{H} = \bigoplus_{n=1}^{\infty} \mathcal{H}_n$ and $S = \bigoplus_{n=1}^{\infty} S_n$ we obtain the Kraus-Larson example [6] with slightly improved estimate $\kappa(S_n) = n\sqrt{1 + \frac{1}{n^2}} > n$.

3. Non-hyperreflexive reflexive intertwiners

The Kraus-Larson technique can be used also to obtain non-hyperreflexive reflexive intertwiners and to show that quasi-similarity does not preserve hyperreflexivity [13]. Recall that the intertwiners of $T \in \mathcal{L}(\mathcal{H}), T' \in \mathcal{L}(\mathcal{H}')$ is defined by

$$I(T,T') = \{ X \in \mathcal{L}(\mathcal{H},\mathcal{H}') : XT = T'X \}.$$

The construction of non-hyperreflexive reflexive intertwiner in [13, Section 5] is based on the following observation: Putting

$$A_n = \begin{pmatrix} 0 & n \\ 0 & 1 \end{pmatrix}, B_n = \begin{pmatrix} 0 & 0 \\ -n & 1 \end{pmatrix}$$

we obtain

$$X \in I(A_n, B_n) \iff X_n = \begin{pmatrix} 0 & \lambda \\ \mu & -n(\lambda + \mu) \end{pmatrix},$$

i.e. $I(A_n, B_n) = S_n$ from the Kraus-Larson example. Now it is easy to prove the following theorem

Theorem 3.8. There exist operators T, T' for which I(T, T') is reflexive but not hyperreflexive.

Proof. It is enough to put

$$T_n = e^{\pi/n} \frac{1}{n} (nI + A_n), \qquad T'_n = e^{\pi/n} \frac{1}{n} (nI + B_n)$$

Since $||A_n|| = ||B_n|| = \sqrt{1+n^2}$ we have $||T_n|| \le 1 + \frac{\sqrt{1+n^2}}{n}$. Consequently $\{||T_n||\}$ is a bounded sequence. By analogous reasoning $\{||T'_n||\}$ is also bounded. For $n \ne m$ the minimal polynomials of T_n and T'_m are relatively prime. It follows that $I(T_n, T'_m) = \{0\}$ and If

$$T = \bigoplus_{n=1}^{\infty} T_n, \quad T' = \bigoplus_{n=1}^{\infty} T'_n, \quad \text{then } I(T,T') = \bigoplus_{n=1}^{\infty} I(T_n,T'_n).$$

Thus the Kraus-Larson example is also an example of intertwiner which is reflexive but not hyperreflexive. $\hfill \Box$

4. C_0 CONTRACTIONS

The construction from Theorem 3.8 can be further modified to obtain a contraction T of class C_0 (see [11] for the definition) having reflexive but not hyperreflexive commutant $\{T\}'$. Put again $A_n = \begin{pmatrix} 0 & n \\ 0 & 1 \end{pmatrix}$ and $D_n = (1 - \frac{1}{n})I + \frac{1}{n^2}A_n$, $T_n = \frac{e^{i\pi/n}}{\|D_n\|}D_n$ Using Theorem 2.6 it easy to prove that $\kappa\{T_n\}' = \kappa\{A_n\}' = \sqrt{1 + n^2}$ [3, Lemma 1.9]. Thus we obtain a sequence of contraction $\{T_n\}_{n=1}^{\infty}$ having the following properties:

(i) $||T_n|| = 1$.

(i) $\|T_n\| = 1$. (ii) $D_n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/n \\ 1-(1/n)+(1/n^2) \end{pmatrix}$. Therefore the spectrum $\sigma(T_n) = \{\lambda_n, \mu_n\},$ $|\lambda_n| = \frac{1-(1/n)}{\|D_n\|} < |\mu_n| = \frac{1-(1/n)+(1/n^2)}{\|D_n\|} < 1, \lim |\lambda_n| = \lim |\mu_n| = 1.$ (iii) If $m \neq n$ then $\sigma(T_n) \cap \sigma(T_m) = \emptyset$.

Since $\lim(1 - |\lambda_n|) + (1 - |\mu_n|) = 0$ there exists a subsequence $\{T_k\}_{k=1}^{\infty}$ of $\{T_n\}_{n=1}^{\infty}$ such that the following theorem holds.

Theorem 4.9. There exists a sequence of matrices $T_k \in C^{2\times 2}$ such that

- (1) $||T_k|| = 1$ for all $k = 1, 2, \ldots$
- (2) Each T_k has two eigenvalues $\lambda_k \neq \mu_k$ and therefore its commutant $\{T_k\}'$ is hyperreflexive.
- (3) For any $k \neq m$ the spectra of T_k and T_m are disjoint, i.e. $\{\lambda_k, \mu_k\} \cap \{\lambda_m, \mu_m\} = \emptyset$.
- (4) $\lim_{k \to \infty} \kappa(\{T_k\}') = \infty.$ (5) $\sum_{k=1}^{\infty} [(1 - |\lambda_k|) + (1 - |\mu_k|)] < \infty \text{ and, consequently,}$
- (6) Blaschke product $B(\lambda) = \prod_{k=1}^{\infty} \frac{\overline{\lambda_k}}{|\lambda_k|} \frac{\lambda_k \lambda}{1 \overline{\lambda_k}\lambda} \frac{\overline{\mu_k}}{|\mu_k|} \frac{\mu_k \lambda}{1 \overline{\mu_k}\lambda}$ converges in the open unit disk.

Consequently, $T = \bigoplus_{k=1}^{\infty} T_k$ is a C_0 contraction having minimal function $B(\lambda)$ and $\{T\}'$ is reflexive but not hyperreflexive.

The above obtained C_0 contraction T is not a model operator, i.e there is no inner function θ such that $T = S_{\theta}$, where $S_{\theta} \in \mathcal{L}(H^2 \ominus \theta H^2)$, $S_{\theta}u = P_{\theta}[\lambda u(\lambda)]$. Here H^2 and H^{∞} are the usual Hardy spaces of functions analytic in the unit disk, θ is inner if $|\theta(e^{it})| = 1$ almost everywhere and P_{θ} denotes the orthogonal projection from H^2 onto $\mathcal{H}_{\theta} = H^2 \ominus \theta H^2$.

Recently [3] a Blaschke product $B(\lambda)$ was constructed such that S_B is reflexive, but not hyperreflexive. First, the following sufficient condition was proved.

Theorem 4.10. For $\lambda \in \mathbb{C}$, $|\lambda| < 1$ denote the corresponding Blaschke factor by

$$b_{\lambda}(z) = \frac{|\lambda|}{\lambda} \frac{\lambda - z}{1 - \overline{\lambda}z}$$

and for a Blaschke product having only simple zeroes

$$B(z) = \prod_{n=1}^{\infty} b_{\lambda_n}(z) \text{ put } B_{\lambda_n}(z) = \frac{B(z)}{b_{\lambda_n}(z)}$$

If B satisfies the Carleson condition

$$\inf_n |B_{\lambda_n}(\lambda_n)| > 0\,,$$

then S_B is hyperreflexive.

The main idea (due to R.V. Bessonov) which allows to construct a Blaschke product B having simple zeroes for which S_B is not hyperreflexive was to take B(z) = C(z)D(z), where $C(z) = \prod_{n=1}^{\infty} b_{\mu_n}(z)$, $D(z) = \prod_{n=1}^{\infty} b_{\nu_n}(z)$ such that $|\mu_n - \nu_n|$ is sufficiently small, i.e. B is 'almost' a square. Then it can be shown that S_B is similar to direct sum of its restrictions M_n to the 2-dimensional spaces spanned by the eigenvectors corresponding to the eigenvalues μ_n and ν_n of the model operator S_B . So this example is again of the Kraus-Larson type.

We conclude with a natural open problem:

Question 4.11. Does there exist a non-hyperreflexive reflexive space of operators which is not similar to a direct sum of reflexive spaces?

References

- [1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
- [2] N.T. Arveson, Ten Lectures in Operator Algebras, CBMS Regional Conference Series 55, AMS, Providence 1984.
- [3] R.V. Bessonov, J. Bračič, M. Zajac, Non-hyperreflexive reflexive spaces of operators, Studia Math. 202 (2011), 65–80.
- [4] J. B. Conway, A Course in Operator Theory, Graduate Studies in Mathematics, AMS, Providence 2000.
- [5] K. Kliś, M. Ptk, k-Hyperreflexive subspaces, Houston J. Math. **32** (2006), 299–313.
- [6] J. Kraus, D. Larson, Some applications of technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227–236.
- [7] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340–356.
- [8] V. Müller, M. Ptak, Hyperreflexivity of finite-dimensional subspaces, J. Funct. Anal. 218 (2005), 395–408.
- [9] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517.
- [10] V.S. Shulman, The Figlede-Putnam theorem and reflexivity, Soviet Math. Dokl. 14 (1973), 784–786, (Dokl. Akad. Nauk SSSR, Tom 210 (1973), No. 3).
- B. Sz.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam Akadémiai kiadó, Budapest, 1970.
- [12] S. Tosaka, A note on the hyperreflexivity constant for certain reflexive algebras, Studia Math. 134 (1999), 203–206.
- [13] M. Zajac, On reflexivity and hyperreflexivity of some spaces of intertwining operators, Math. Bohemica 133 (2008), 75–83.

DEPARTMENT OF MATHEMATICS ICSM, SLOVAK UNIVERSITY OF TECHNOLOGY, SK-812 19 BRATISLAVA, SLOVAKIA

E-mail address: michal.zajac@stuba.sk