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1. Introduction and Preliminaries

Let H,H′ be complex separable Hilbert spaces and L(H,H′) be the space of all bounded
linear operators H → H′. For H = H′ we shall write briefly L(H,H) = L(H). The reflexive
closure of S ⊆ L(H,H′) is defined by

Ref S =
⋂
x∈H

{T ∈ L(H,H′); Tx ∈ [Sx]}

where [Sx] denotes the closed linear span of Sx = {Sx; S ∈ S}. For T ∈ L(H,H′), let

d (T,S) = inf
S∈S
‖T − S‖ = inf

S∈S
sup

x∈H,‖x‖≤1
‖Tx− Sx‖

and
α (T,S) = sup

x∈H,‖x‖≤1
inf
S∈S
‖Tx− Sx‖.

It is well-known [4, 8] that
(i) α (T,S) ≤ d (T,S) and
(ii) Ref S is a WOT (weak operator topology) closed subspace of L(H,H′).
(iii) α (T,S) = sup{‖QTP‖ : P,Q are orthogonal projections and QSP = {0}}.
(iv) α (T,S) = sup{|(Tx, y)| : ‖x‖ = ‖y‖ = 1, (Sx, y) = 0 for all S ∈ S}

Definition 1.1. A WOT closed subspace S ⊆ L(H,H′) is said to be reflexive if Ref S = S and
it is called hyperreflexive if there exists a constant c ≥ 1 such that

(1) d (T,S) ≤ c α (T,S) ∀T ∈ L(H,H′) .

The number κ(S) = inf{c ≥ 1 ; c is satisfying (1)} is called the hyperreflexivity constant of S.
A single operator T ∈ L(H) is (hyper)reflexive if so is the unital weakly closed algebra

generated by T .

The reflexivity of subalgebras was studied for the first time in 1966 by D. Sarason [9].
The notion of reflexivity of algebras of operators was generalized to subspaces of operators
by V.S. Shul’man [10]. The concept of hyperreflexivity for algebras was introduced in 1975, [1, 2]
and generalized for subspaces in 1985 [6, 7].

It easy to see that every hyperreflexive linear space S ⊆ L(H) is reflexive. On the other hand,
there are reflexive linear spaces of operators that are not hyperreflexive. The aim of this paper
is to give a review of known examples of nonhyperreflexive reflexive spaces. In fact there is only
a few such examples and we shall show that all of them can be viewed as modifications of the
Kraus-Larson example [6].

First, let us recall the following results on hyperreflexivity of similar and unitary equivalent
subspaces of operators [3].

Proposition 1.2. Let X and Y be complex Banach spaces and let S ⊆ L(X) be a hyperreflexive
subspace of operators. If A ∈ L(X,Y) and B ∈ L(Y,X) are invertible operators, then ASB ⊆
L(Y) is a hyperreflexive subspace and

1
‖A‖‖B‖‖A−1‖‖B−1‖κ(S) ≤ κ(ASB) ≤ ‖A‖‖B‖‖A−1‖‖B−1‖κ(S).
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Corollary 1.3. Let H be a complex Hilbert space and S ⊆ L(H) be a hyperreflexive linear
space. If U and V are unitary operators on H, then the space USV is hyperreflexive and
κ(USV ) = κ(S).

All known examples of non-hyperreflexive reflexive spaces are direct sum of hyperreflexive
subspaces. In their constructions the following result (see, e.g. [5]) is used:

Theorem 1.4. For n ∈ N let Hn be a Hilbert space and let Sn ⊂ L(Hn) be a subspace. Then
S =

⊕∞
n=1 Sn is hyperreflexive if and only if all Sn are hyperreflexive and there is K > 0 such

that κ(Sn) ≤ K for all n ∈ N.

2. Kraus-Larson example

Now we are going to describe the first known example of non-hyperreflexive reflexive space
[6]. Let H2 be a two-dimensional Hilbert space with orthonormal basis {e1, e2}. Fix 0 < ε < 1/3
and put u1 = e1, u2 = e1 + εe2.

Lemma 2.5. Let 0 < ε < 1/3, and let

Sε =
{
Sλ,µ =

(
0 λ
µ −(λ+µ)/ε

)
: λ, µ ∈ C

}
.

Then Sε is a hyperreflexive subspace of L(H2) with

(2) κ(S) ≥ 1
3ε
.

Using Corollary 1.3 and the following theorem (2) can be improved.

Theorem 2.6 (S. Tosaka [12]). Let H = C2 and let L, M be one-dimensional subspaces of H

such that L + M = H. Denote Alg{L,M} = {T ∈ B(H); TL ⊆ L and TM ⊆ M}. Thus,
Alg{L,M} is the algebra of all operators in B(H) that leave L and M invariant . If the angle ϕ
between L and M is not zero, then Alg{L,M} is hyperreflexive and its hyperreflexivity constant
is κ(Alg{L,M}) = 1

sinϕ .

Lemma 2.7. Under the notation of Lemma 2.5 the following estimation holds.

(3) κ(Sε) =
√

1 + ε2

ε
>

1
ε
.

Proof. Observe that U =
(

0 −1
1 0

)
is unitary and for ∀λ, µ ∈ C

USλ,µ = U
(

0 λ
µ −(λ+µ)/ε

)
=
(
−µ (λ+µ)/ε
0 λ

)
.

This means that USε = Alg{u1, u2}, u1 = e1, u2 = e1+εe2, and by Theorem 2.6 and Corollary 1.3

κ(Sε) =
1

sinϕ
,

where cosϕ = (u1,u2)
‖u1‖‖u2‖ = 1√

1+ε2
. Consequently sinϕ =

√
1− cos2 ϕ = ε√

1+ε2
. From this (3)

follows easily. �

Now putting Sn = S1/n, Hn = C2, H =
⊕∞

n=1 Hn and S =
⊕∞

n=1 Sn we obtain the Kraus-

Larson example [6] with slightly improved estimate κ(Sn) = n
√

1 + 1
n2 > n.

3. Non-hyperreflexive reflexive intertwiners

The Kraus-Larson technique can be used also to obtain non-hyperreflexive reflexive intertwin-
ers and to show that quasi-similarity does not preserve hyperreflexivity [13]. Recall that the
intertwiners of T ∈ L(H), T ′ ∈ L(H′) is defined by

I(T, T ′) = {X ∈ L(H,H′) : XT = T ′X} .
The construction of non-hyperreflexive reflexive intertwiner in [13, Section 5] is based on the

following observation: Putting

An = ( 0 n
0 1 ) , Bn =

(
0 0
−n 1

)
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we obtain
X ∈ I(An, Bn) ⇐⇒ Xn =

(
0 λ
µ −n(λ+µ)

)
,

i.e. I(An, Bn) = Sn from the Kraus-Larson example. Now it is easy to prove the following
theorem

Theorem 3.8. There exist operators T, T ′ for which I(T, T ′) is reflexive but not hyperreflexive.

Proof. It is enough to put

Tn = eπ/n
1
n

(nI +An) , T ′n = eπ/n
1
n

(nI +Bn) .

Since ‖An‖ = ‖Bn‖ =
√

1 + n2 we have ‖Tn‖ ≤ 1 +
√

1+n2

n . Consequently {‖Tn‖} is a bounded
sequence. By analogous reasoning {‖T ′n‖} is also bounded. For n 6= m the minimal polynomials
of Tn and T ′m are relatively prime. It follows that I(Tn, T ′m) = {0} and If

T =
∞⊕
n=1

Tn , T ′ =
∞⊕
n=1

T ′n , then I(T, T ′) =
∞⊕
n=1

I(Tn, T ′n) .

Thus the Kraus-Larson example is also an example of intertwiner which is reflexive but not
hyperreflexive. �

4. C0 contractions

The construction from Theorem 3.8 can be further modified to obtain a contraction T of class
C0 (see [11] for the definition) having reflexive but not hyperreflexive commutant {T}′. Put
again An = ( 0 n

0 1 ) and Dn = (1− 1
n)I + 1

n2An, Tn = eiπ/n

‖Dn‖Dn Using Theorem 2.6 it easy to prove

that κ{Tn}′ = κ{An}′ =
√

1 + n2 [3, Lemma 1.9]. Thus we obtain a sequence of contraction
{Tn}∞n=1 having the following properties:

(i) ‖Tn‖ = 1.
(ii) Dn ( 0

1 ) =
(

1/n

1−(1/n)+(1/n2)

)
. Therefore the spectrum σ(Tn) = {λn, µn},

|λn| = 1−(1/n)
‖Dn‖ < |µn| = 1−(1/n)+(1/n2)

‖Dn‖ < 1, lim |λn| = lim |µn| = 1.
(iii) If m 6= n then σ(Tn) ∩ σ(Tm) = ∅.

Since lim(1− |λn|) + (1− |µn|) = 0 there exists a subsequence {Tk}∞k=1 of {Tn}∞n=1 such that the
following theorem holds.

Theorem 4.9. There exists a sequence of matrices Tk ∈ C2×2 such that
(1) ‖Tk‖ = 1 for all k = 1, 2, . . . .
(2) Each Tk has two eigenvalues λk 6= µk and therefore its commutant {Tk}′ is hyperreflexive.
(3) For any k 6= m the spectra of Tk and Tm are disjoint, i.e. {λk, µk} ∩ {λm, µm} = ∅.
(4) lim

k→∞
κ({Tk}′) =∞.

(5)
∞∑
k=1

[(1− |λk|) + (1− |µk|)] <∞ and, consequently,

(6) Blaschke product B(λ) =
∞∏
k=1

λk
|λk|

λk−λ
1−λkλ

µk
|µk|

µk−λ
1−µkλ converges in the open unit disk.

Consequently, T =
⊕∞

k=1 Tk is a C0 contraction having minimal function B(λ) and {T}′ is
reflexive but not hyperreflexive.

The above obtained C0 contraction T is not a model operator, i.e there is no inner function θ
such that T = Sθ, where Sθ ∈ L(H2 	 θH2), Sθu = Pθ[λu(λ)]. Here H2 and H∞ are the usual
Hardy spaces of functions analytic in the unit disk, θ is inner if |θ(eit)| = 1 almost everywhere
and Pθ denotes the orthogonal projection from H2 onto Hθ = H2 	 θH2.

Recently [3] a Blaschke product B(λ) was constructed such that SB is reflexive, but not
hyperreflexive. First, the following sufficient condition was proved.
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Theorem 4.10. For λ ∈ C, |λ| < 1 denote the corresponding Blaschke factor by

bλ(z) =
|λ|
λ

λ− z
1− λz

and for a Blaschke product having only simple zeroes

B(z) =
∞∏
n=1

bλn(z) put Bλn(z) =
B(z)
bλn(z)

.

If B satisfies the Carleson condition

inf
n
|Bλn(λn)| > 0 ,

then SB is hyperreflexive.

The main idea (due to R.V. Bessonov) which allows to construct a Blaschke product B
having simple zeroes for which SB is not hyperreflexive was to take B(z) = C(z)D(z), where
C(z) =

∏∞
n=1 bµn(z), D(z) =

∏∞
n=1 bνn(z) such that |µn − νn| is sufficiently small, i.e. B is

‘almost’ a square. Then it can be shown that SB is similar to direct sum of its restrictions Mn

to the 2-dimensional spaces spanned by the eigenvectors corresponding to the eigenvalues µn
and νn of the model operator SB. So this example is again of the Kraus-Larson type.

We conclude with a natural open problem:

Question 4.11. Does there exist a non-hyperreflexive reflexive space of operators which is not
similar to a direct sum of reflexive spaces?
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