ON HYPERREFLEXIVITY OF POWER PARTIAL ISOMETRIES

K. PIWOWARCZYK AND M. PTAK

Let \mathcal{H} be a complex separable Hilbert space. Let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. For an operator $T \in B(\mathcal{H})$ let us consider $\mathcal{W}(T)$ a unital subalgebra of $B(\mathcal{H})$ containning the operator T and closed in WOT topology. Denote by Lat T the set of all projections onto closed subspaces invariant for operator T. Now for a given operator $A \in B(\mathcal{H})$ except the usual distance from A to $\mathcal{W}(T)$ denoted by $\operatorname{dist}(A, \mathcal{W}(T))$, we can define the distance ,,determined by its invariant subspaces" as $\alpha(A, \mathcal{W}(T))=\sup \{\|(I-P) A P\|: P \in \operatorname{Lat} T\}$. Usually $\alpha(A, \mathcal{W}(T)) \leqslant \operatorname{dist}(A, \mathcal{W}(T))$. The operator $T \in B(\mathcal{H})$ is called hyperreflexive if the usual distance can be controlled by the distance α, i.e. there is a positive constant κ such that

$$
\operatorname{dist}(A, \mathcal{W}(T)) \leqslant \kappa \alpha(A, \mathcal{W}(T)) \text { for all } A \in B(\mathcal{H})
$$

Recall that an operator $V \in B(\mathcal{H})$ is called a partial isometry if $V^{*} V$ is an orthogonal projection. An operator S is a power partial isometry if S^{n} is a partial isometry for every positive integer n. It is known (see [4]) that if S is a power partial isometry on \mathcal{H} then there is a unique orthogonal decomposition $\mathcal{H}=\mathcal{H}_{u}(S) \oplus \mathcal{H}_{s}(S) \oplus \mathcal{H}_{c}(S) \oplus \mathcal{H}_{t}(S)$ where $\mathcal{H}_{u}(S), \mathcal{H}_{s}(S), \mathcal{H}_{c}(S)$, $\mathcal{H}_{t}(S)$ reduce S and $S_{u}=\left.S\right|_{\mathcal{H}_{u}(S)}$ is a unitary operator, $S_{s}=\left.S\right|_{\mathcal{H}_{s}(S)}$ is a unilateral shift of arbitrary multiplicity, $S_{c}=\left.S\right|_{\mathcal{H}_{c}(S)}$ is a backward shift of arbitrary multiplicity and $S_{t}=\left.S\right|_{\mathcal{H}_{t}(S)}$ is (possibly infinite) direct sum of truncated shifts.

Reflexivity (the weaker property then hyperreflexivity) of power partial isometries was studied in [1]. It is known that the unilateral shift is hyperreflexive [2]. A backward shift is also hyperreflexive since hyperreflexivity is preserved after taking the adjoint of the operator. On the other hand the single Jordan block is not hyperreflexive not even reflexive [3]. Conditions for hyperreflexivity of power partial isometries will be presented.

For a power partial isometry S let us define decreasing sequences of projections $P_{n}=S^{* n} S^{n}$, $Q_{n}=S^{n} S^{* n}$ for all positive integers n. (We are setting the convention that $S^{0}=I$.) Denote $\bar{d}_{k}=\operatorname{dim} \mathcal{R}\left(P_{k-1}\left(Q_{0}-Q_{1}\right)\right), d_{k}=\operatorname{dim} \mathcal{R}\left(P_{k-1}\left(Q_{0}-Q_{1}\right)\right) \ominus \mathcal{R}\left(P_{k}\left(Q_{0}-Q_{1}\right)\right)$ for $k \in \mathbb{N}$. Denote also $\bar{d}_{\infty}=d_{\infty}=\operatorname{dim} \bigcap_{k \in \mathbb{N}} \mathcal{R}\left(P_{k-1}\left(Q_{0}-Q_{1}\right)\right)$. Let us observe that the number \bar{d}_{k} says how many forward shifts (truncated or not) of order at least k are in operator S, the number d_{k} says how many forward shifts (truncated or not) of order exactly k are in operator S. Symmetrically we denote $\bar{d}_{k}^{*}=\operatorname{dim} \mathcal{R}\left(Q_{k-1}\left(P_{0}-P_{1}\right)\right), d_{k}^{*}=\operatorname{dim} \mathcal{R}\left(Q_{k-1}\left(P_{0}-P_{1}\right)\right) \ominus \mathcal{R}\left(Q_{k}\left(P_{0}-P_{1}\right)\right)$ for $k \in \mathbb{N}$ and $\bar{d}_{\infty}^{*}=d_{\infty}^{*}=\operatorname{dim} \bigcap_{k \in \mathbb{N}} \mathcal{R}\left(Q_{k-1}\left(P_{0}-P_{1}\right)\right)$.

Theorem. Let $S \in B(\mathcal{H})$ be a completely non-unitary power partial isometry. If
(i) $d_{\infty}>0$ or
(ii) $d_{\infty}^{*}>0$ or
(iii) there is $k_{0} \in \mathbb{N}$ such that $d_{k}=0$ for $k>k_{0}$ and $d_{k_{0}}+d_{k_{0}-1} \geqslant 2$
then S is hyperreflexive.

References

[1] E. A. Azoff, W. S. Li, M. Mbekhta, M. Ptak, On Consistent operators and Reflexivity, Integr. Equ. Oper. Theory 71 (2011), 1-12.
[2] K. R. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265-273.
[3] J. A. Deddens, P. A. Fillmore, Reflexive linear transformations, Lin. Alg. Appl. 10 (1975), 89-93.
[4] P. R. Halmos, L. J. Wallen, Powers of Partial Isometries, J. Math. and Mech. 19 (1970), 657-663.
Department of Applied Mathematics, University of Agriculture in Krakow, ul. Balicka 253C, 30-198 Kraków, Poland

