ON HYPERREFLEXIVITY OF POWER PARTIAL ISOMETRIES

K. PIWOWARCZYK AND M. PTAK

Let \mathcal{H} be a complex separable Hilbert space. Let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . For an operator $T \in B(\mathcal{H})$ let us consider $\mathcal{W}(T)$ a unital subalgebra of $B(\mathcal{H})$ containing the operator T and closed in WOT topology. Denote by Lat T the set of all projections onto closed subspaces invariant for operator T. Now for a given operator $A \in B(\mathcal{H})$ except the usual distance from A to $\mathcal{W}(T)$ denoted by dist $(A, \mathcal{W}(T))$, we can define the distance ,,determined by its invariant subspaces" as $\alpha(A, \mathcal{W}(T)) = \sup\{\|(I - P)AP\| : P \in \operatorname{Lat} T\}$. Usually $\alpha(A, \mathcal{W}(T)) \leq \operatorname{dist}(A, \mathcal{W}(T))$. The operator $T \in B(\mathcal{H})$ is called hyperreflexive if the usual distance can be controlled by the distance α , i.e. there is a positive constant κ such that

 $\operatorname{dist}(A, \mathcal{W}(T)) \leq \kappa \ \alpha(A, \mathcal{W}(T)) \text{ for all } A \in B(\mathcal{H}).$

Recall that an operator $V \in B(\mathcal{H})$ is called a *partial isometry* if V^*V is an orthogonal projection. An operator S is a *power partial isometry* if S^n is a partial isometry for every positive integer n. It is known (see [4]) that if S is a power partial isometry on \mathcal{H} then there is a unique orthogonal decomposition $\mathcal{H} = \mathcal{H}_u(S) \oplus \mathcal{H}_s(S) \oplus \mathcal{H}_c(S) \oplus \mathcal{H}_t(S)$ where $\mathcal{H}_u(S), \mathcal{H}_s(S), \mathcal{H}_c(S), \mathcal{H}_t(S)$ reduce S and $S_u = S|_{\mathcal{H}_u(S)}$ is a unitary operator, $S_s = S|_{\mathcal{H}_s(S)}$ is a unilateral shift of arbitrary multiplicity, $S_c = S|_{\mathcal{H}_c(S)}$ is a backward shift of arbitrary multiplicity and $S_t = S|_{\mathcal{H}_t(S)}$ is (possibly infinite) direct sum of truncated shifts.

Reflexivity (the weaker property then hyperreflexivity) of power partial isometries was studied in [1]. It is known that the unilateral shift is hyperreflexive [2]. A backward shift is also hyperreflexive since hyperreflexivity is preserved after taking the adjoint of the operator. On the other hand the single Jordan block is not hyperreflexive not even reflexive [3]. Conditions for hyperreflexivity of power partial isometries will be presented.

For a power partial isometry S let us define decreasing sequences of projections $P_n = S^{*n}S^n$, $Q_n = S^n S^{*n}$ for all positive integers n. (We are setting the convention that $S^0 = I$.) Denote $\overline{d}_k = \dim \mathcal{R}(P_{k-1}(Q_0 - Q_1)), d_k = \dim \mathcal{R}(P_{k-1}(Q_0 - Q_1)) \ominus \mathcal{R}(P_k(Q_0 - Q_1))$ for $k \in \mathbb{N}$. Denote also $\overline{d}_{\infty} = d_{\infty} = \dim \bigcap_{k \in \mathbb{N}} \mathcal{R}(P_{k-1}(Q_0 - Q_1))$. Let us observe that the number \overline{d}_k says how many forward shifts (truncated or not) of order at least k are in operator S, the number d_k says how many forward shifts (truncated or not) of order exactly k are in operator S. Symmetrically we denote $\overline{d}_k^* = \dim \mathcal{R}(Q_{k-1}(P_0 - P_1)), d_k^* = \dim \mathcal{R}(Q_{k-1}(P_0 - P_1)) \ominus \mathcal{R}(Q_k(P_0 - P_1))$ for $k \in \mathbb{N}$ and $\overline{d}_{\infty}^* = d_{\infty}^* = \dim \bigcap_{k \in \mathbb{N}} \mathcal{R}(Q_{k-1}(P_0 - P_1))$.

Theorem. Let $S \in B(\mathcal{H})$ be a completely non-unitary power partial isometry. If

- (i) $d_{\infty} > 0$ or
- (ii) $d_{\infty}^* > 0$ or
- (iii) there is $k_0 \in \mathbb{N}$ such that $d_k = 0$ for $k > k_0$ and $d_{k_0} + d_{k_0-1} \ge 2$

then S is hyperreflexive.

References

- E. A. Azoff, W. S. Li, M. Mbekhta, M. Ptak, On Consistent operators and Reflexivity, Integr. Equ. Oper. Theory 71 (2011), 1–12.
- [2] K. R. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265–273.
- [3] J. A. Deddens, P. A. Fillmore, *Reflexive linear transformations*, Lin. Alg. Appl. 10 (1975), 89–93.
- [4] P. R. Halmos, L. J. Wallen, Powers of Partial Isometries, J. Math. and Mech. 19 (1970), 657–663.

DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF AGRICULTURE IN KRAKOW, UL. BALICKA 253C, 30-198 KRAKÓW, POLAND