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ON MULTIPLE SOLUTIONS OF GENERALIZED SECOND
ORDER BOUNDARY VALUE PROBLEM WITH ¢-LAPLACIAN.

BoORIsS RUDOLF

We deal with the boundary value problem for a second order differential equation with ®—
Laplacian

(1) (@) = f(t, z, ®(2"))

with generalized boundary conditions

(2) #(0)=0,  a(bh) = / 2(5)dg(s) — k(' (5)).

We assume that ® € C!(R) is an increasing function and ligl ®(x) = £oo. Function f :
Tr— 00

I x R? — R is a continuous function, I = [0,b]. Function g is a nondecreasing function of
bounded variation, & > 0.

The aim of this paper is to prove the existence of multiple classical solutions z(t) € D,
D = {z € C'(I), ®(2') € C*(I)} using a method of lower and upper solutions. The paper is
motivated by the results of [2], [3], [5], [6].

Set I =T\ {t;; 0<t; <b, i=1...n}, D’ ={x e C(I)NCI°), ®(z') e C'(I)}.

Definition 1. A function a € D° is called a lower solution of (1), (2) if

Jim a'(t) < tEI;n+ a'(t)  fori=l, ... n,
(@(a'(1)))" = f(t,alt), 2( (1))  fort eI,

20)>0,  alb) < /Oba(s)dg(s) k(o (b).
Similarly a function 8 € D° is called an upper solution of (1), (2) if
tgrtril_ B'(t) > tli){&rﬂ/(t) for i=1, ... n,
(@(B'(1)) < f(t,B(t), (),  fortel,
FO <0 40> [ A6 - k)

In the case of strict inequalities for limits at ¢;, for the equation on I° and for the second
boundary condition, we say that lower and upper solutions are strict.

Lemma 1. [6] Let o, 8 be a strict lower and upper solution and z(t) be a solution of the
problem (1), (2).
Then o(t) < x(t) implies a(t) < z(t) and B(t) > x(t) implies 5(t) > x(t).

The following Lemma formulates the sufficient growth condition for the nonlinearity f. (Com-
pare with [1], [3]).
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Lemma 2. Let for eachr > r( there exists a constant a, > 0 and a function h, € C(R7, [a,, c])
satisfying

o <I>_1(S) B 0 (I>_1(S) e
@ A e B L
such that
(4) |tz y)| < he(lyl)

fortel, |z <r, y€R.

Then for each r > r¢ there exists p, > 0 such that for a solution x of (1), (2) |z| < r implies
2] < pr.
Proof. Let xo > 0 be a constant such that ®(z) > 0 for x > (. Let |z(t)| < r be a solution of
(1), (2). Suppose that z’(7) > z¢ on (tg,t). Substitute ®(2'(t)) = y(¢). Then

y,(t) = f(t>$7y) < hr(|y|)

and

t (I)—l / t
/(y)ydTg/ac’dTg%“.
to h""(|y|) to

Substitution y(t) = s leads to

y(t) -1
/ (%) 4s < 2,
y(to) Pr(]8])

Then there exists p, > 0 such that y(t) < ®_1(p,). The proof is similar for the case /(1) < 0.

EXISTENCE

Following existence theorems describe the situation for well ordered lower and upper solutions
as well as for the unordered pair of lower and upper solutions.

Theorem 1. Letr > 0 be such that

(i) f(t,r,0) >0 and f(t,—r,0) <0 on I,

(i) there exists a function h, € C(Ro, [a,,o0]) with a, > 0 satisfying (8) such that (4) holds
fortel, |z| <r, y€R,

(iii) G(b) < 1.

Then there ezists a solution x of (1), (2) such that |z(t)| < r.
Proof. Set X = C([0,b]) and F,(s) = fos f(rz(r), ®(2'(7))) dr.

We define an operator T': X — X by

b b
Ta(t) = G(b)l—l {/0 G(s)(I)‘l(Fw(s))ds+k:(Fw(b))} /t B=1(F,(s)) ds.

Then Tx(t) € D = {x € C1(I), ®(2') € C}(I)}.
Obviously (T'z)'(0) = 0. Also

b
Ta(b) = /O Ta(s)dg(s) — k&(Tx' (b))

is fulfilled.
The operator T : X — X is completely continuous. A fixed point of T is a solution of (1),
(2)

A perturbed boundary value problem



(5) (@(x')) = Mz, () + (1= N (),
b

() P0)=0, a(b)= / £(s)dg(s) — k(' (b)),
0

posses a strict lower solution —r and a strict upper solution r for each A € [0, 1].
The homotopy operator

b b
H(z,\) = G’(b)ll {/0 G(s)® Y (Fya(s))ds + k:(FxA(b))} —/t O H(F,a(s))ds,

with F, x(s) = [5 Af(7,2(7), ®(2'(7))) + (1 — A)z(7) d7 is completely continuous.

Set Q,,. ={r € X; |z| <r, |2'| < or}. As a fixed point of H is a solution of (5), (2),
Lemma 2 and Lemma 3 imply that there is no solution on the boundary of €2, , . Then the
Leray-Schauder degree

d(H (- A),0,,0)
is well defined and independent on A.
For A = 0is H(z,0) an odd operator. Then
(6) d(I—T,9Q,,,,0)=d(I — H(x,0),,,..,0)=1 (mod 2)
which implies the existence of a fixed point x € §,., of T

Theorem 2. Let
(i) o < B, a(t), B(t) be a lower and upper solution of (1), (2),
(1) 3h € C(R{,[a,00]) with a > 0 satisfying (3) such that (4) holds fort € I, a(t) <z <

B(t), y € R,
(i11) G(b) < 1.
Then there ezists a solution x of (1),(2) such that a(t) < z(t) < B(¢).

Proof. Set r = max{||e||, [|8][}. For M > max{[f(t,z,y)|; t € I, a(t) <z < B({), |yl < or}
we consider a perturbation

(7) (®(2"))" = f*(t, 2, 2(a")),
of the equation (1) where

LB(W).y) + M —BU) + M w141,

t,6(),y) + M(x — 5(t)) Bt) <z <r+1,
t,z,y) a(t) <z < B(),
t,a(t),y) — M(a(t) — x) —r—1<z<a),

f(
f(
[tz y) =9 f(
b
flt,at),y) — M — M(a(t) +r) < —r—1.

Then for each € > 0
(®(a/(t) —¢e) > f (t,at) — e, ®(d/(t) —&).

That means «(t) — ¢ is a strict lower solution of the BVP (7),(2). Similarly 5(¢) + ¢ is a strict
upper solution of (7), (2).

Moreover —(r + 1), r 4+ 1 are also strict lower and upper solutions of (7), (2) and f* satisfies
(i) of Theorem 2 with h,1(s) = h(s) + (2r + 1)M.

Theorem 2 implies the existence of a solution x of (7), (2) satisfying |x(t)| < r + 1.

We prove that x(t) > «(t). Assuming the contrary we suppose that max(«(t) —z(t)) = > 0.
But «(t) — ¢ is a strict lower solution which is in a contradiction with a(tp) — ¢ = z(to) due to
Lemma 2. Then a(t) < z(t). Similarly x(t) < §(t). That means f*(t,z, ®(z')) = f(t,z, ®(z))
and z(t) is also a solution of (1), (2).

Moreover (6) holds on the set @ ={zx € X; a <z <, |2/| < 0741}



Theorem 3. Let

(i) a £ B, a(t), B(t) be strict lower and upper solutions of the problem (1), (2),

(i) for each r > 0 IM, > 0 such that |f(t,z,y)| < M, for eacht € I, |x| <7,y € R,

(ii) G(b) < 1.

Then there is a solution x of (1), (2), such that Jt, € I, aty) > z(t,), Ity € I, x(ty) >
Bt)}-
Proof. Set 1o = max (||, ||3]), © > 70 + b®~1(2M,.b).

We define a perturbation f* by

f(t7r7y)+Mr .’IJ>7’—|—1,
flt,ry) + My(x—r) r<axz<r+1,
f*(t7337y): f(tvxay) _TSZ‘ST’
f(t,r,y)+M,,(33+1") —T—1§$<—T‘,
f(t7r7y)_Mr < —r—1.
As f*(t,r +1,0) = f(t,7,0) + M, > 0, r + 1 is a strict upper solution of the problem
(8) (@(2)) = f(t,z, 2(2"))
b
(2) z'(0) =0, z(b) = / z(s)dg(s) — k®(2'(b)).
0

Similarly —r — 1 is a strict lower solution of (8), (2).

As |f*(t,z,y)| < 2M, f* satisfies conditions of Lemma 2. Theorem 1 implies the existence

of a solution of (8), (2) and
d(I —T",Qr41,,0) =1 (mod 2),

where T™ is defined by the same formulas as T replacing f by f*.

Let now

Q ={z(t) € Vg1, z<p}, Qu ={z(t) € Yry1, o<z}

Then Theorem 2 and its proof imply d(I — T%,€;,0) = d(I — T*,9Q,,0) = 1 (mod 2). Set
Q= g1\ (Ql U Qu) . As —r — 1, « are strict lower and r 4 1, 3 are strict upper solutions,
Lemma 1 implies there is no solution z € 02,,.

The additivity of the degree yields

d(I —T*,Qn,0) =1 (mod 2).

Let x(t) € Q,, be a solution of (10), (11). We will prove that |z(¢)| < r. Suppose 3¢, x(t) > r.
Then the definition of Q,, implies Jtg, z(tg) = ro. Moreover (®(z))" = f*(t,z, ®(a')) < 2M,.
Integrating to t;, the maximum of x(t), we obtain z'(t) < ®!(2M,b) and x(t) < z(ty) +
b®~1(2M,.b) = r. Then z(t) < r and similarly z(¢) > —r. The definition of f* implies x(t) is a
solution of (1), (2).

MULTIPLICITY

The following two perturbation lemmas are based on Lemma 1.

Lemma 4. Let « be a strict lower solution of the problem (1), (2).

Set
[ ) 2(t) > alt)
fottr = { Fit,alt)y) () < a(t).
Then each solution xz(t) of
9) (@(2")) = falt,z, @(")),
b
(2) PO =0 a(b) = [ a(s)dgls) - k(@' ())
0

is a solution of (1), (2).

Proof. Let z(t) be a solution of (9), (2). Suppose that m = max(«(t) — xz(t)) > 0. Then
a(t) —m < z(t) and there is ¢ty such that a(tg) — m = z(tp). As «a(t) — m is a strict lower
solution of (9), (2), we obtain a contradiction with Lemma 1.



Lemma 5. Let 8 be a strict upper solution of the problem (1), (2).

Set
[ fay) @) < B()
folt:zy) = { F(6B(1),y)  =(t) > B(1).

Then each solution x(t) of

((I)(J}/))/ = fﬂ(t7x7(1)(x/))7 (2)
is a solution of (1), (2).
The proof of the existence of multiple solutions is based on previous results.

Theorem 4. Let

(i) a < B, a < a1, a1 £ B, where a, oy are strict lower solutions and (3 is a strict upper
solution of the problem (1), (2),

(i) IM > 0 such that |f(t,x,y)| < M for eacht € I, a(t) <z, y € R,

(i11) G(b) < 1.

Then the problem (1), (2) has at least two solutions.

Proof. Consider the problem (9), (2). Clearly |f,| < M. Theorem 2 implies the existence of
a solution z1(t) of (9), (2), such that & < 1 < 3, and Theorem 3 implies the existence of a
solution xo(t) such that 3¢, € I, x(ty) > [(tp)}. Lemma 4 implies x1,zo are solutions of (1),
(2).
Theorem 5. Let

(i) a < B, p1 < B, a £ B1, where a is a strict lower solution and (3, 1 are strict upper
solutions of the problem (1), (2),

(i) AM > 0 such that |f(t,z,y)| < M for eacht € I, x < 3(t), y € R,

(iii) G(b) < 1.

Then the problem (1), (2) has at least two solutions.

Example. Consider the boundary value problem for the equation

(10) (®(2))" = fu(t,x) + fa(2) + (D).

Assume that fi(¢,z) is a continuous function such that
lim fl(tvx) = 00, lim fl(ta J") = —00,
Tr——00 T—00

uniformly for ¢ € I, and there are constants 1, x2, 1 < 2, such that fi1(t,z1) < f1(t,x2) for
each t € I. Further assume that f5 is a continuous bounded function.

Then for each h(t) there is r > max{|x1|, |x2|} sufficiently large, such that —r, r are strict lower
and upper solutions of (10), (2). Moreover, for each h(t) such that fi(¢,z1) < h(t) < fi(t,z2),
x1 is a strict upper and x5 a strict lower solution of (10), (2).

Then for each h(t), fi(t,z1) < h(t) < fi(t,x2), there are at least three solutions of the
problem (10), (2).

For each h(t), f1(t,z1) < h(t) < fi(t,z2), there are at least two solutions of the problem
(10), (2).

Finally for each h(t) € C(I), exists a solution of (10), (2).
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