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ON MULTIPLE SOLUTIONS OF GENERALIZED SECOND

ORDER BOUNDARY VALUE PROBLEM WITH Φ-LAPLACIAN.

Boris Rudolf

We deal with the boundary value problem for a second order differential equation with Φ–
Laplacian

(1) (Φ(x′))′ = f(t, x, Φ(x′))

with generalized boundary conditions

(2) x′(0) = 0, x(b) =
∫ b

0
x(s)dg(s)− kΦ(x′(b)).

We assume that Φ ∈ C1(R) is an increasing function and lim
x→±∞

Φ(x) = ±∞. Function f :

I × R2 → R is a continuous function, I = [0, b]. Function g is a nondecreasing function of
bounded variation, k ≥ 0.

The aim of this paper is to prove the existence of multiple classical solutions x(t) ∈ D,
D = {x ∈ C1(I), Φ(x′) ∈ C1(I)} using a method of lower and upper solutions. The paper is
motivated by the results of [2], [3], [5], [6].

Set I0 = I \ {ti; 0 < ti < b, i = 1 . . . n}, D0 = {x ∈ C(I) ∩ C1(I0), Φ(x′) ∈ C1(I)}.
Definition 1. A function α ∈ D0 is called a lower solution of (1), (2) if

lim
t→ti−

α′(t) ≤ lim
t→ti+

α′(t) for i=1, . . . ,n,

(Φ(α′(t)))′ ≥ f(t, α(t), Φ(α′(t))) for t ∈ I0,

α′(0) ≥ 0, α(b) ≤
∫ b

0
α(s)dg(s)− kΦ(α′(b)).

Similarly a function β ∈ D0 is called an upper solution of (1), (2) if

lim
t→ti−

β′(t) ≥ lim
t→ti+

β′(t) for i=1, . . . ,n,

(Φ(β′(t)))′ ≤ f(t, β(t), Φ(β′)), for t ∈ I0,

β′(0) ≤ 0, β(b) ≥
∫ b

0
β(s)dg(s)− kΦ(β′(b)).

In the case of strict inequalities for limits at ti, for the equation on I0 and for the second
boundary condition, we say that lower and upper solutions are strict.

Lemma 1. [6] Let α, β be a strict lower and upper solution and x(t) be a solution of the
problem (1), (2).

Then α(t) ≤ x(t) implies α(t) < x(t) and β(t) ≥ x(t) implies β(t) > x(t).

The following Lemma formulates the sufficient growth condition for the nonlinearity f . (Com-
pare with [1], [3]).
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Lemma 2. Let for each r > r0 there exists a constant ar > 0 and a function hr ∈ C(R+
0 , [ar,∞])

satisfying

(3)
∫ ∞

0

Φ−1(s)
hr(s)

ds = ∞,

∫ 0

−∞

Φ−1(s)
hr(|s|) ds = −∞

such that

(4) |f(t, x, y)| < hr(|y|)

for t ∈ I, |x| < r, y ∈ R.
Then for each r > r0 there exists ρr > 0 such that for a solution x of (1), (2) |x| < r implies

|x′| < ρr.

Proof. Let x0 > 0 be a constant such that Φ(x) > 0 for x > x0. Let |x(t)| < r be a solution of
(1), (2). Suppose that x′(τ) > x0 on (t0, t). Substitute Φ(x′(t)) = y(t). Then

y′(t) = f(t, x, y) ≤ hr(|y|)

and ∫ t

t0

Φ−1(y)y′

hr(|y|) dτ ≤
∫ t

t0

x′ dτ ≤ 2r.

Substitution y(t) = s leads to ∫ y(t)

y(t0)

Φ−1(s)
hr(|s|) ds ≤ 2r.

Then there exists ρr > 0 such that y(t) < Φ−1(ρr). The proof is similar for the case x′(τ) < 0.

Existence

Following existence theorems describe the situation for well ordered lower and upper solutions
as well as for the unordered pair of lower and upper solutions.

Theorem 1. Let r > 0 be such that
(i) f(t, r, 0) > 0 and f(t,−r, 0) < 0 on I,
(ii) there exists a function hr ∈ C(R0, [ar,∞]) with ar > 0 satisfying (3) such that (4) holds

for t ∈ I, |x| < r, y ∈ R,
(iii) G(b) < 1.
Then there exists a solution x of (1), (2) such that |x(t)| < r.

Proof. Set X = C1([0, b]) and Fx(s) =
∫ s

0 f(τ, x(τ), Φ(x′(τ))) dτ .
We define an operator T : X → X by

Tx(t) =
1

G(b)− 1

{∫ b

0
G(s)Φ−1(Fx(s)) ds + k(Fx(b))

}
−

∫ b

t

Φ−1(Fx(s)) ds.

Then Tx(t) ∈ D = {x ∈ C1(I), Φ(x′) ∈ C1(I)}.
Obviously (Tx)′(0) = 0. Also

Tx(b) =
∫ b

0
Tx(s)dg(s)− kΦ(Tx′(b))

is fulfilled.
The operator T : X → X is completely continuous. A fixed point of T is a solution of (1),

(2).
A perturbed boundary value problem



(Φ(x′))′ = λf(t, x, Φ(x′)) + (1− λ)x(t),(5)

x′(0) = 0, x(b) =
∫ b

0
x(s)dg(s)− kΦ(x′(b)),(2)

posses a strict lower solution −r and a strict upper solution r for each λ ∈ [0, 1].
The homotopy operator

H(x, λ) =
1

G(b)− 1

{∫ b

0
G(s)Φ−1(Fx,λ(s)) ds + k(Fx,λ(b))

}
−

∫ b

t

Φ−1(Fx,λ(s)) ds,

with Fx,λ(s) =
∫ s

0 λf(τ, x(τ), Φ(x′(τ))) + (1− λ)x(τ) dτ is completely continuous.
Set Ωr,%r = {x ∈ X; |x| < r, |x′| < %r}. As a fixed point of H is a solution of (5), (2),

Lemma 2 and Lemma 3 imply that there is no solution on the boundary of Ωr,%r . Then the
Leray-Schauder degree

d(H(., λ), Ωr,%r
, 0)

is well defined and independent on λ.
For λ = 0 is H(x, 0) an odd operator. Then

(6) d(I − T, Ωr,%r , 0) = d(I −H(x, 0), Ωr,%r , 0) = 1 (mod 2)

which implies the existence of a fixed point x ∈ Ωr,%r of T .

Theorem 2. Let
(i) α ≤ β, α(t), β(t) be a lower and upper solution of (1), (2),
(ii) ∃h ∈ C(R+

0 , [a,∞]) with a > 0 satisfying (3) such that (4) holds for t ∈ I, α(t) ≤ x ≤
β(t), y ∈ R,

(iii) G(b) < 1.
Then there exists a solution x of (1),(2) such that α(t) ≤ x(t) ≤ β(t).

Proof. Set r = max{||α||, ||β||}. For M > max{|f(t, x, y)|; t ∈ I, α(t) ≤ x ≤ β(t), |y| < %r}
we consider a perturbation

(7) (Φ(x′))′ = f∗(t, x, Φ(x′)),

of the equation (1) where

f∗(t, x, y) =





f(t, β(t), y) + M(r − β(t)) + M x > r + 1,

f(t, β(t), y) + M(x− β(t)) β(t) < x ≤ r + 1,

f(t, x, y) α(t) ≤ x ≤ β(t),

f(t, α(t), y)−M(α(t)− x) −r − 1 ≤ x < α(t),

f(t, α(t), y)−M −M(α(t) + r) x < −r − 1.

Then for each ε > 0
(Φ(α′(t)− ε)′ > f∗(t, α(t)− ε, Φ(α′(t)− ε).

That means α(t)− ε is a strict lower solution of the BVP (7),(2). Similarly β(t) + ε is a strict
upper solution of (7), (2).

Moreover −(r + 1), r + 1 are also strict lower and upper solutions of (7), (2) and f∗ satisfies
(ii) of Theorem 2 with hr+1(s) = h(s) + (2r + 1)M .

Theorem 2 implies the existence of a solution x of (7), (2) satisfying |x(t)| < r + 1.
We prove that x(t) ≥ α(t). Assuming the contrary we suppose that max(α(t)−x(t)) = ε > 0.

But α(t)− ε is a strict lower solution which is in a contradiction with α(t0)− ε = x(t0) due to
Lemma 2. Then α(t) ≤ x(t). Similarly x(t) ≤ β(t). That means f∗(t, x, Φ(x′)) = f(t, x, Φ(x′))
and x(t) is also a solution of (1), (2).

Moreover (6) holds on the set Ω = {x ∈ X; α < x < β, |x′| < %r+1}



Theorem 3. Let
(i) α � β, α(t), β(t) be strict lower and upper solutions of the problem (1), (2),
(ii) for each r > 0 ∃Mr > 0 such that |f(t, x, y)| ≤ Mr for each t ∈ I, |x| < r, y ∈ R,
(iii) G(b) < 1.
Then there is a solution x of (1), (2), such that ∃ta ∈ I, α(ta) > x(ta), ∃tb ∈ I, x(tb) >

β(tb)}.
Proof. Set r0 = max (||α||, ||β||), r > r0 + bΦ−1(2Mrb).

We define a perturbation f∗ by

f∗(t, x, y) =





f(t, r, y) + Mr x > r + 1,

f(t, r, y) + Mr(x− r) r < x ≤ r + 1,

f(t, x, y) −r ≤ x ≤ r,

f(t, r, y) + Mr(x + r) −r − 1 ≤ x < −r,

f(t, r, y)−Mr x < −r − 1.

As f∗(t, r + 1, 0) = f(t, r, 0) + Mr > 0, r + 1 is a strict upper solution of the problem

(Φ(x′))′ = f∗(t, x, Φ(x′))(8)

x′(0) = 0, x(b) =
∫ b

0
x(s)dg(s)− kΦ(x′(b)).(2)

Similarly −r − 1 is a strict lower solution of (8), (2).
As |f∗(t, x, y)| < 2Mr f∗ satisfies conditions of Lemma 2. Theorem 1 implies the existence

of a solution of (8), (2) and

d(I − T ∗, Ωr+1,ρ, 0) = 1 (mod 2),

where T ∗ is defined by the same formulas as T replacing f by f∗.
Let now

Ωl = {x(t) ∈ Ωr+1,%, x < β}, Ωu = {x(t) ∈ Ωr+1,%, α < x}.
Then Theorem 2 and its proof imply d(I − T ∗, Ωl, 0) = d(I − T ∗, Ωu, 0) = 1 (mod 2). Set
Ωm = Ωr+1,% \

(
Ωl ∪ Ωu

)
. As −r − 1, α are strict lower and r + 1, β are strict upper solutions,

Lemma 1 implies there is no solution x ∈ ∂Ωm.
The additivity of the degree yields

d(I − T ∗, Ωm, 0) = 1 (mod 2).

Let x(t) ∈ Ωm be a solution of (10), (11). We will prove that |x(t)| < r. Suppose ∃t, x(t) > r.
Then the definition of Ωm implies ∃t0, x(t0) = r0. Moreover (Φ(x′))′ = f∗(t, x, Φ(x′)) < 2Mr.
Integrating to t1, the maximum of x(t), we obtain x′(t) < Φ−1(2Mrb) and x(t) < x(t0) +
bΦ−1(2Mrb) = r. Then x(t) < r and similarly x(t) > −r. The definition of f∗ implies x(t) is a
solution of (1), (2).

Multiplicity

The following two perturbation lemmas are based on Lemma 1.

Lemma 4. Let α be a strict lower solution of the problem (1), (2).
Set

fα(t, x, y) =

{
f(t, x, y) x(t) > α(t)

f(t, α(t), y) x(t) ≤ α(t).

Then each solution x(t) of

(Φ(x′))′ = fα(t, x, Φ(x′)),(9)

x′(0) = 0, x(b) =
∫ b

0
x(s)dg(s)− kΦ(x′(b)),(2)

is a solution of (1), (2).

Proof. Let x(t) be a solution of (9), (2). Suppose that m = max(α(t) − x(t)) ≥ 0. Then
α(t) − m ≤ x(t) and there is t0 such that α(t0) − m = x(t0). As α(t) − m is a strict lower
solution of (9), (2), we obtain a contradiction with Lemma 1.



Lemma 5. Let β be a strict upper solution of the problem (1), (2).
Set

fβ(t, x, y) =

{
f(t, x, y) x(t) < β(t)

f(t, β(t), y) x(t) ≥ β(t).

Then each solution x(t) of

(Φ(x′))′ = fβ(t, x, Φ(x′)), (2)

is a solution of (1), (2).

The proof of the existence of multiple solutions is based on previous results.

Theorem 4. Let
(i) α < β, α < α1, α1 � β, where α, α1 are strict lower solutions and β is a strict upper

solution of the problem (1), (2),
(ii) ∃M > 0 such that |f(t, x, y)| ≤ M for each t ∈ I, α(t) < x, y ∈ R,
(iii) G(b) < 1.
Then the problem (1), (2) has at least two solutions.

Proof. Consider the problem (9), (2). Clearly |fα| < M . Theorem 2 implies the existence of
a solution x1(t) of (9), (2), such that α < x1 < β, and Theorem 3 implies the existence of a
solution x2(t) such that ∃tb ∈ I, x(tb) > β(tb)}. Lemma 4 implies x1, x2 are solutions of (1),
(2).

Theorem 5. Let
(i) α < β, β1 < β, α � β1, where α is a strict lower solution and β, β1 are strict upper

solutions of the problem (1), (2),
(ii) ∃M > 0 such that |f(t, x, y)| ≤ M for each t ∈ I, x < β(t), y ∈ R,
(iii) G(b) < 1.
Then the problem (1), (2) has at least two solutions.

Example. Consider the boundary value problem for the equation

(10) (Φ(x′))′ = f1(t, x) + f2(x′) + h(t).

Assume that f1(t, x) is a continuous function such that

lim
x→−∞

f1(t, x) = ∞, lim
x→∞

f1(t, x) = −∞,

uniformly for t ∈ I, and there are constants x1, x2, x1 < x2, such that f1(t, x1) < f1(t, x2) for
each t ∈ I. Further assume that f2 is a continuous bounded function.

Then for each h(t) there is r > max{|x1|, |x2|} sufficiently large, such that−r, r are strict lower
and upper solutions of (10), (2). Moreover, for each h(t) such that f1(t, x1) < h(t) < f1(t, x2),
x1 is a strict upper and x2 a strict lower solution of (10), (2).

Then for each h(t), f1(t, x1) < h(t) < f1(t, x2), there are at least three solutions of the
problem (10), (2).

For each h(t), f1(t, x1) ≤ h(t) ≤ f1(t, x2), there are at least two solutions of the problem
(10), (2).

Finally for each h(t) ∈ C(I), exists a solution of (10), (2).
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