ON MULTIPLE SOLUTIONS OF GENERALIZED SECOND ORDER BOUNDARY VALUE PROBLEM WITH Φ -LAPLACIAN.

BORIS RUDOLF

We deal with the boundary value problem for a second order differential equation with $\Phi-$ Laplacian

(1)
$$(\Phi(x'))' = f(t, x, \Phi(x'))$$

with generalized boundary conditions

(2)
$$x'(0) = 0, \qquad x(b) = \int_0^b x(s)dg(s) - k\Phi(x'(b)).$$

We assume that $\Phi \in C^1(R)$ is an increasing function and $\lim_{x \to \pm \infty} \Phi(x) = \pm \infty$. Function $f : I \times R^2 \to R$ is a continuous function, I = [0, b]. Function g is a nondecreasing function of bounded variation, $k \ge 0$.

The aim of this paper is to prove the existence of multiple classical solutions $x(t) \in D$, $D = \{x \in C^1(I), \ \Phi(x') \in C^1(I)\}$ using a method of lower and upper solutions. The paper is motivated by the results of [2], [3], [5], [6].

Set $I^0 = I \setminus \{t_i; \ 0 < t_i < b, \ i = 1 \dots n\}, \ D^0 = \{x \in C(I) \cap C^1(I^0), \ \Phi(x') \in C^1(I)\}.$

Definition 1. A function $\alpha \in D^0$ is called a lower solution of (1), (2) if

$$\lim_{t \to t_i -} \alpha'(t) \leq \lim_{t \to t_i +} \alpha'(t) \quad \text{for } i=1, \dots, n,$$
$$(\Phi(\alpha'(t)))' \geq f(t, \alpha(t), \Phi(\alpha'(t))) \quad \text{for } t \in I^0,$$
$$\alpha'(0) \geq 0, \quad \alpha(b) \leq \int_0^b \alpha(s) dg(s) - k \Phi(\alpha'(b)).$$

Similarly a function $\beta \in D^0$ is called an upper solution of (1), (2) if

$$\lim_{t \to t_i-} \beta'(t) \ge \lim_{t \to t_i+} \beta'(t) \quad \text{for } i=1, \dots, n,$$

$$(\Phi(\beta'(t)))' \le f(t, \beta(t), \Phi(\beta')), \quad \text{for } t \in I^0,$$

$$\beta'(0) \le 0, \qquad \beta(b) \ge \int_0^b \beta(s) dg(s) - k \Phi(\beta'(b)).$$

In the case of strict inequalities for limits at t_i , for the equation on I^0 and for the second boundary condition, we say that lower and upper solutions are strict.

Lemma 1. [6] Let α , β be a strict lower and upper solution and x(t) be a solution of the problem (1), (2).

Then
$$\alpha(t) \leq x(t)$$
 implies $\alpha(t) < x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t) > x(t)$.

The following Lemma formulates the sufficient growth condition for the nonlinearity f. (Compare with [1], [3]).

¹⁹⁹¹ Mathematics Subject Classification. 34C25.

Supported by grant 1/0021/10 of the Scientific Grant Agency VEGA of Slovak Republic

Lemma 2. Let for each $r > r_0$ there exists a constant $a_r > 0$ and a function $h_r \in C(R_0^+, [a_r, \infty])$ satisfying

(3)
$$\int_0^\infty \frac{\Phi^{-1}(s)}{h_r(s)} \, ds = \infty, \quad \int_{-\infty}^0 \frac{\Phi^{-1}(s)}{h_r(|s|)} \, ds = -\infty$$

such that

(4)
$$|f(t, x, y)| < h_r(|y|)$$

for $t \in I$, |x| < r, $y \in R$.

Then for each $r > r_0$ there exists $\rho_r > 0$ such that for a solution x of (1), (2) |x| < r implies $|x'| < \rho_r$.

Proof. Let $x_0 > 0$ be a constant such that $\Phi(x) > 0$ for $x > x_0$. Let |x(t)| < r be a solution of (1), (2). Suppose that $x'(\tau) > x_0$ on (t_0, t) . Substitute $\Phi(x'(t)) = y(t)$. Then

$$y'(t) = f(t, x, y) \le h_r(|y|)$$

and

$$\int_{t_0}^t \frac{\Phi^{-1}(y)y'}{h_r(|y|)} \, d\tau \le \int_{t_0}^t x' \, d\tau \le 2r$$

Substitution y(t) = s leads to

$$\int_{y(t_0)}^{y(t)} \frac{\Phi^{-1}(s)}{h_r(|s|)} \, ds \le 2r.$$

Then there exists $\rho_r > 0$ such that $y(t) < \Phi_{-1}(\rho_r)$. The proof is similar for the case $x'(\tau) < 0$.

EXISTENCE

Following existence theorems describe the situation for well ordered lower and upper solutions as well as for the unordered pair of lower and upper solutions.

Theorem 1. Let r > 0 be such that

(i) f(t,r,0) > 0 and f(t,-r,0) < 0 on I,

(ii) there exists a function $h_r \in C(R_0, [a_r, \infty])$ with $a_r > 0$ satisfying (3) such that (4) holds for $t \in I$, |x| < r, $y \in R$,

(*iii*) G(b) < 1.

Then there exists a solution x of (1), (2) such that |x(t)| < r.

Proof. Set $X = C^1([0, b])$ and $F_x(s) = \int_0^s f(\tau, x(\tau), \Phi(x'(\tau))) d\tau$. We define an operator $T: X \to X$ by

$$Tx(t) = \frac{1}{G(b) - 1} \left\{ \int_0^b G(s) \Phi^{-1}(F_x(s)) \, ds + k(F_x(b)) \right\} - \int_t^b \Phi^{-1}(F_x(s)) \, ds$$

Then $Tx(t) \in D = \{x \in C^1(I), \Phi(x') \in C^1(I)\}.$ Obviously (Tx)'(0) = 0 Also

Obviously (Tx)'(0) = 0. Also

$$Tx(b) = \int_0^b Tx(s)dg(s) - k\Phi(Tx'(b))$$

is fulfilled.

The operator $T: X \to X$ is completely continuous. A fixed point of T is a solution of (1), (2).

A perturbed boundary value problem

(5)
$$(\Phi(x'))' = \lambda f(t, x, \Phi(x')) + (1 - \lambda)x(t),$$

(2)
$$x'(0) = 0, \qquad x(b) = \int_0^b x(s)dg(s) - k\Phi(x'(b)),$$

posses a strict lower solution -r and a strict upper solution r for each $\lambda \in [0, 1]$.

The homotopy operator

$$H(x,\lambda) = \frac{1}{G(b) - 1} \left\{ \int_0^b G(s) \Phi^{-1}(F_{x,\lambda}(s)) \, ds + k(F_{x,\lambda}(b)) \right\} - \int_t^b \Phi^{-1}(F_{x,\lambda}(s)) \, ds,$$

with $F_{x,\lambda}(s) = \int_0^s \lambda f(\tau, x(\tau), \Phi(x'(\tau))) + (1 - \lambda)x(\tau) d\tau$ is completely continuous. Set $\Omega_{r,\varrho_r} = \{x \in X; |x| < r, |x'| < \varrho_r\}$. As a fixed point of H is a solution of (5), (2), Lemma 2 and Lemma 3 imply that there is no solution on the boundary of Ω_{r,ρ_r} . Then the Leray-Schauder degree

$$d(H(.,\lambda),\Omega_{r,\rho_r},0)$$

is well defined and independent on λ .

For $\lambda = 0$ is H(x, 0) an odd operator. Then

(6)
$$d(I - T, \Omega_{r,\varrho_r}, 0) = d(I - H(x, 0), \Omega_{r,\varrho_r}, 0) = 1 \pmod{2}$$

which implies the existence of a fixed point $x \in \Omega_{r,\rho_r}$ of T.

Theorem 2. Let

(i) $\alpha \leq \beta$, $\alpha(t)$, $\beta(t)$ be a lower and upper solution of (1), (2), (ii) $\exists h \in C(R_0^+, [a, \infty])$ with a > 0 satisfying (3) such that (4) holds for $t \in I$, $\alpha(t) \leq x \leq 1$ $\beta(t), y \in R,$

(*iii*) G(b) < 1.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.

Proof. Set $r = \max\{||\alpha||, ||\beta||\}$. For $M > \max\{|f(t, x, y)|; t \in I, \alpha(t) \le x \le \beta(t), |y| < \varrho_r\}$ we consider a perturbation

(7)
$$(\Phi(x'))' = f^*(t, x, \Phi(x')),$$

of the equation (1) where

$$f^{*}(t,x,y) = \begin{cases} f(t,\beta(t),y) + M(r-\beta(t)) + M & x > r+1, \\ f(t,\beta(t),y) + M(x-\beta(t)) & \beta(t) < x \le r+1, \\ f(t,x,y) & \alpha(t) \le x \le \beta(t), \\ f(t,\alpha(t),y) - M(\alpha(t)-x) & -r-1 \le x < \alpha(t), \\ f(t,\alpha(t),y) - M - M(\alpha(t)+r) & x < -r-1. \end{cases}$$

Then for each $\varepsilon > 0$

 $(\Phi(\alpha'(t) - \varepsilon)' > f^*(t, \alpha(t) - \varepsilon, \Phi(\alpha'(t) - \varepsilon)).$

That means $\alpha(t) - \varepsilon$ is a strict lower solution of the BVP (7),(2). Similarly $\beta(t) + \varepsilon$ is a strict upper solution of (7), (2).

Moreover -(r+1), r+1 are also strict lower and upper solutions of (7), (2) and f^* satisfies (ii) of Theorem 2 with $h_{r+1}(s) = h(s) + (2r+1)M$.

Theorem 2 implies the existence of a solution x of (7), (2) satisfying |x(t)| < r + 1.

We prove that $x(t) \ge \alpha(t)$. Assuming the contrary we suppose that $\max(\alpha(t) - x(t)) = \varepsilon > 0$. But $\alpha(t) - \varepsilon$ is a strict lower solution which is in a contradiction with $\alpha(t_0) - \varepsilon = x(t_0)$ due to Lemma 2. Then $\alpha(t) \leq x(t)$. Similarly $x(t) \leq \beta(t)$. That means $f^*(t, x, \Phi(x')) = f(t, x, \Phi(x'))$ and x(t) is also a solution of (1), (2).

Moreover (6) holds on the set $\Omega = \{x \in X; \alpha < x < \beta, |x'| < \varrho_{r+1}\}$

Theorem 3. Let

(i) $\alpha \not\leq \beta$, $\alpha(t)$, $\beta(t)$ be strict lower and upper solutions of the problem (1), (2), (ii) for each r > 0 $\exists M_r > 0$ such that $|f(t, x, y)| \leq M_r$ for each $t \in I$, |x| < r, $y \in R$, (*iii*) G(b) < 1.

Then there is a solution x of (1), (2), such that $\exists t_a \in I, \ \alpha(t_a) > x(t_a), \ \exists t_b \in I, \ x(t_b) > x(t_b) = x(t_b)$ $\beta(t_b)$.

Proof. Set $r_0 = \max(||\alpha||, ||\beta||), r > r_0 + b\Phi^{-1}(2M_rb).$

We define a perturbation f^* by

$$f^*(t, x, y) = \begin{cases} f(t, r, y) + M_r & x > r + 1, \\ f(t, r, y) + M_r(x - r) & r < x \le r + 1, \\ f(t, x, y) & -r \le x \le r, \\ f(t, r, y) + M_r(x + r) & -r - 1 \le x < -r, \\ f(t, r, y) - M_r & x < -r - 1. \end{cases}$$

As $f^*(t, r+1, 0) = f(t, r, 0) + M_r > 0$, r+1 is a strict upper solution of the problem

(8)
$$(\Phi(x'))' = f^*(t, x, \Phi(x'))$$

(2)
$$x'(0) = 0, \qquad x(b) = \int_0^b x(s)dg(s) - k\Phi(x'(b)).$$

Similarly -r - 1 is a strict lower solution of (8), (2).

As $|f^*(t, x, y)| < 2M_r f^*$ satisfies conditions of Lemma 2. Theorem 1 implies the existence of a solution of (8), (2) and

$$d(I - T^*, \Omega_{r+1,\rho}, 0) = 1 \pmod{2}$$

where T^* is defined by the same formulas as T replacing f by f^* .

Let now

$$\Omega_l = \{ x(t) \in \Omega_{r+1,\varrho}, \quad x < \beta \}, \qquad \Omega_u = \{ x(t) \in \Omega_{r+1,\varrho}, \quad \alpha < x \}.$$

Then Theorem 2 and its proof imply $d(I - T^*, \Omega_l, 0) = d(I - T^*, \Omega_u, 0) = 1 \pmod{2}$. Set $\Omega_m = \Omega_{r+1,\varrho} \setminus (\overline{\Omega_l \cup \Omega_u})$. As -r - 1, α are strict lower and r + 1, β are strict upper solutions, Lemma 1 implies there is no solution $x \in \partial \Omega_m$.

The additivity of the degree yields

$$d(I - T^*, \Omega_m, 0) = 1 \pmod{2}.$$

Let $x(t) \in \Omega_m$ be a solution of (10), (11). We will prove that |x(t)| < r. Suppose $\exists t, x(t) > r$. Then the definition of Ω_m implies $\exists t_0, x(t_0) = r_0$. Moreover $(\Phi(x'))' = f^*(t, x, \Phi(x')) < 2M_r$. Integrating to t_1 , the maximum of x(t), we obtain $x'(t) < \Phi^{-1}(2M_r b)$ and $x(t) < x(t_0) +$ $b\Phi^{-1}(2M_rb) = r$. Then x(t) < r and similarly x(t) > -r. The definition of f^* implies x(t) is a solution of (1), (2).

MULTIPLICITY

The following two perturbation lemmas are based on Lemma 1.

Lemma 4. Let α be a strict lower solution of the problem (1), (2). S

$$f_{\alpha}(t, x, y) = \begin{cases} f(t, x, y) & x(t) > \alpha(t) \\ f(t, \alpha(t), y) & x(t) \le \alpha(t). \end{cases}$$

Then each solution x(t) of

(9)
$$(\Phi(x'))' = f_{\alpha}(t, x, \Phi(x'))$$

(2)
$$x'(0) = 0, \qquad x(b) = \int_0^b x(s)dg(s) - k\Phi(x'(b)),$$

is a solution of (1), (2).

Proof. Let x(t) be a solution of (9), (2). Suppose that $m = \max(\alpha(t) - x(t)) \ge 0$. Then $\alpha(t) - m \leq x(t)$ and there is t_0 such that $\alpha(t_0) - m = x(t_0)$. As $\alpha(t) - m$ is a strict lower solution of (9), (2), we obtain a contradiction with Lemma 1.

Lemma 5. Let β be a strict upper solution of the problem (1), (2). Set

$$f_{\beta}(t,x,y) = \begin{cases} f(t,x,y) & x(t) < \beta(t) \\ f(t,\beta(t),y) & x(t) \ge \beta(t). \end{cases}$$

Then each solution x(t) of

 $(\Phi(x'))' = f_{\beta}(t, x, \Phi(x')),$ (2)

is a solution of (1), (2).

The proof of the existence of multiple solutions is based on previous results.

Theorem 4. Let

(i) $\alpha < \beta$, $\alpha < \alpha_1$, $\alpha_1 \nleq \beta$, where α , α_1 are strict lower solutions and β is a strict upper solution of the problem (1), (2),

(ii) $\exists M > 0$ such that $|f(t, x, y)| \leq M$ for each $t \in I$, $\alpha(t) < x, y \in R$, (iii) G(b) < 1.

Then the problem (1), (2) has at least two solutions.

Proof. Consider the problem (9), (2). Clearly $|f_{\alpha}| < M$. Theorem 2 implies the existence of a solution $x_1(t)$ of (9), (2), such that $\alpha < x_1 < \beta$, and Theorem 3 implies the existence of a solution $x_2(t)$ such that $\exists t_b \in I$, $x(t_b) > \beta(t_b)$. Lemma 4 implies x_1, x_2 are solutions of (1), (2).

Theorem 5. Let

(i) $\alpha < \beta$, $\beta_1 < \beta$, $\alpha \leq \beta_1$, where α is a strict lower solution and β , β_1 are strict upper solutions of the problem (1), (2),

(ii) $\exists M > 0$ such that $|f(t, x, y)| \leq M$ for each $t \in I$, $x < \beta(t)$, $y \in R$, (iii) G(b) < 1.

Then the problem (1), (2) has at least two solutions.

Example. Consider the boundary value problem for the equation

(10)
$$(\Phi(x'))' = f_1(t,x) + f_2(x') + h(t).$$

Assume that $f_1(t, x)$ is a continuous function such that

$$\lim_{x \to -\infty} f_1(t, x) = \infty, \qquad \lim_{x \to \infty} f_1(t, x) = -\infty,$$

uniformly for $t \in I$, and there are constants $x_1, x_2, x_1 < x_2$, such that $f_1(t, x_1) < f_1(t, x_2)$ for each $t \in I$. Further assume that f_2 is a continuous bounded function.

Then for each h(t) there is $r > \max\{|x_1|, |x_2|\}$ sufficiently large, such that -r, r are strict lower and upper solutions of (10), (2). Moreover, for each h(t) such that $f_1(t, x_1) < h(t) < f_1(t, x_2)$, x_1 is a strict upper and x_2 a strict lower solution of (10), (2).

Then for each h(t), $f_1(t, x_1) < h(t) < f_1(t, x_2)$, there are at least three solutions of the problem (10), (2).

For each h(t), $f1(t, x_1) \leq h(t) \leq f_1(t, x_2)$, there are at least two solutions of the problem (10), (2).

Finally for each $h(t) \in C(I)$, exists a solution of (10), (2).

References

- Gaines R., Mawhin J., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer Verlag, Berlin/New York, 1977.
- 2. Rachůnková I., Upper and Lower Solutions and Topological Degree, JMAA 234 (1998), 311–327.
- Rachůnková I., Staněk S., Tvrdý M., Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations, in: Handbook of differential equations Elsevier, 2006.
- Rudolf B., An existence and multiplicity result for a periodic boundary value problem, Mathematica Bohemica 133 (2008), 41–61.
- Rudolf B., On a boundary value problem for differential equation with p-Laplacian., Tatra Mountains Math. Publ. 48 (2011), 189–195.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL ENGINEERING STU, 812 19 BRATISLAVA, SLOVAKIA