ON MULTIPLE SOLUTIONS OF GENERALIZED SECOND ORDER BOUNDARY VALUE PROBLEM WITH $\Phi-L A P L A C I A N$.

Boris Rudolf

We deal with the boundary value problem for a second order differential equation with Φ Laplacian

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

with generalized boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) . \tag{2}
\end{equation*}
$$

We assume that $\Phi \in C^{1}(R)$ is an increasing function and $\lim _{x \rightarrow \pm \infty} \Phi(x)= \pm \infty$. Function f : $I \times R^{2} \rightarrow R$ is a continuous function, $I=[0, b]$. Function g is a nondecreasing function of bounded variation, $k \geq 0$.

The aim of this paper is to prove the existence of multiple classical solutions $x(t) \in D$, $D=\left\{x \in C^{1}(I), \Phi\left(x^{\prime}\right) \in C^{1}(I)\right\}$ using a method of lower and upper solutions. The paper is motivated by the results of [2], [3], [5], [6].

Set $I^{0}=I \backslash\left\{t_{i} ; 0<t_{i}<b, i=1 \ldots n\right\}, D^{0}=\left\{x \in C(I) \cap C^{1}\left(I^{0}\right), \Phi\left(x^{\prime}\right) \in C^{1}(I)\right\}$.
Definition 1. A function $\alpha \in D^{0}$ is called a lower solution of (1), (2) if

$$
\begin{gathered}
\lim _{t \rightarrow t_{i}-} \alpha^{\prime}(t) \leq \lim _{t \rightarrow t_{i}+} \alpha^{\prime}(t) \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{n}, \\
\left(\Phi\left(\alpha^{\prime}(t)\right)\right)^{\prime} \geq f\left(t, \alpha(t), \Phi\left(\alpha^{\prime}(t)\right)\right) \quad \text { for } t \in I^{0}, \\
\alpha^{\prime}(0) \geq 0, \quad \alpha(b) \leq \int_{0}^{b} \alpha(s) d g(s)-k \Phi\left(\alpha^{\prime}(b)\right) .
\end{gathered}
$$

Similarly a function $\beta \in D^{0}$ is called an upper solution of (1), (2) if

$$
\begin{gathered}
\lim _{t \rightarrow t_{i}-} \beta^{\prime}(t) \geq \lim _{t \rightarrow t_{i}+} \beta^{\prime}(t) \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{n}, \\
\left(\Phi\left(\beta^{\prime}(t)\right)\right)^{\prime} \leq f\left(t, \beta(t), \Phi\left(\beta^{\prime}\right)\right), \quad \text { for } t \in I^{0}, \\
\beta^{\prime}(0) \leq 0, \quad \beta(b) \geq \int_{0}^{b} \beta(s) d g(s)-k \Phi\left(\beta^{\prime}(b)\right) .
\end{gathered}
$$

In the case of strict inequalities for limits at t_{i}, for the equation on I^{0} and for the second boundary condition, we say that lower and upper solutions are strict.

Lemma 1. [6] Let α, β be a strict lower and upper solution and $x(t)$ be a solution of the problem (1), (2).

Then $\alpha(t) \leq x(t)$ implies $\alpha(t)<x(t)$ and $\beta(t) \geq x(t)$ implies $\beta(t)>x(t)$.
The following Lemma formulates the sufficient growth condition for the nonlinearity f. (Compare with [1], [3]).

Lemma 2. Let for each $r>r_{0}$ there exists a constant $a_{r}>0$ and a function $h_{r} \in C\left(R_{0}^{+},\left[a_{r}, \infty\right]\right)$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\Phi^{-1}(s)}{h_{r}(s)} d s=\infty, \quad \int_{-\infty}^{0} \frac{\Phi^{-1}(s)}{h_{r}(|s|)} d s=-\infty \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
|f(t, x, y)|<h_{r}(|y|) \tag{4}
\end{equation*}
$$

for $t \in I,|x|<r, y \in R$.
Then for each $r>r_{0}$ there exists $\rho_{r}>0$ such that for a solution x of (1), (2) $|x|<r$ implies $\left|x^{\prime}\right|<\rho_{r}$.
Proof. Let $x_{0}>0$ be a constant such that $\Phi(x)>0$ for $x>x_{0}$. Let $|x(t)|<r$ be a solution of (1), (2). Suppose that $x^{\prime}(\tau)>x_{0}$ on $\left(t_{0}, t\right)$. Substitute $\Phi\left(x^{\prime}(t)\right)=y(t)$. Then

$$
y^{\prime}(t)=f(t, x, y) \leq h_{r}(|y|)
$$

and

$$
\int_{t_{0}}^{t} \frac{\Phi^{-1}(y) y^{\prime}}{h_{r}(|y|)} d \tau \leq \int_{t_{0}}^{t} x^{\prime} d \tau \leq 2 r
$$

Substitution $y(t)=s$ leads to

$$
\int_{y\left(t_{0}\right)}^{y(t)} \frac{\Phi^{-1}(s)}{h_{r}(|s|)} d s \leq 2 r
$$

Then there exists $\rho_{r}>0$ such that $y(t)<\Phi_{-1}\left(\rho_{r}\right)$. The proof is similar for the case $x^{\prime}(\tau)<0$.

Existence

Following existence theorems describe the situation for well ordered lower and upper solutions as well as for the unordered pair of lower and upper solutions.

Theorem 1. Let $r>0$ be such that
(i) $f(t, r, 0)>0$ and $f(t,-r, 0)<0$ on I,
(ii) there exists a function $h_{r} \in C\left(R_{0},\left[a_{r}, \infty\right]\right)$ with $a_{r}>0$ satisfying (3) such that (4) holds for $t \in I,|x|<r, y \in R$,
(iii) $G(b)<1$.

Then there exists a solution x of (1), (2) such that $|x(t)|<r$.
Proof. Set $X=C^{1}([0, b])$ and $F_{x}(s)=\int_{0}^{s} f\left(\tau, x(\tau), \Phi\left(x^{\prime}(\tau)\right)\right) d \tau$.
We define an operator $T: X \rightarrow X$ by

$$
T x(t)=\frac{1}{G(b)-1}\left\{\int_{0}^{b} G(s) \Phi^{-1}\left(F_{x}(s)\right) d s+k\left(F_{x}(b)\right)\right\}-\int_{t}^{b} \Phi^{-1}\left(F_{x}(s)\right) d s
$$

Then $T x(t) \in D=\left\{x \in C^{1}(I), \Phi\left(x^{\prime}\right) \in C^{1}(I)\right\}$.
Obviously $(T x)^{\prime}(0)=0$. Also

$$
T x(b)=\int_{0}^{b} T x(s) d g(s)-k \Phi\left(T x^{\prime}(b)\right)
$$

is fulfilled.
The operator $T: X \rightarrow X$ is completely continuous. A fixed point of T is a solution of (1), (2).

A perturbed boundary value problem

$$
\begin{gather*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=\lambda f\left(t, x, \Phi\left(x^{\prime}\right)\right)+(1-\lambda) x(t) \tag{5}\\
x^{\prime}(0)=0, \quad x(b)=\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{gather*}
$$

posses a strict lower solution $-r$ and a strict upper solution r for each $\lambda \in[0,1]$.
The homotopy operator

$$
H(x, \lambda)=\frac{1}{G(b)-1}\left\{\int_{0}^{b} G(s) \Phi^{-1}\left(F_{x, \lambda}(s)\right) d s+k\left(F_{x, \lambda}(b)\right)\right\}-\int_{t}^{b} \Phi^{-1}\left(F_{x, \lambda}(s)\right) d s
$$

with $F_{x, \lambda}(s)=\int_{0}^{s} \lambda f\left(\tau, x(\tau), \Phi\left(x^{\prime}(\tau)\right)\right)+(1-\lambda) x(\tau) d \tau$ is completely continuous.
Set $\Omega_{r, \varrho_{r}}=\left\{x \in X ;|x|<r,\left|x^{\prime}\right|<\varrho_{r}\right\}$. As a fixed point of H is a solution of (5), (2), Lemma 2 and Lemma 3 imply that there is no solution on the boundary of $\Omega_{r, \varrho_{r}}$. Then the Leray-Schauder degree

$$
d\left(H(., \lambda), \Omega_{r, \varrho_{r}}, 0\right)
$$

is well defined and independent on λ.
For $\lambda=0$ is $H(x, 0)$ an odd operator. Then

$$
\begin{equation*}
d\left(I-T, \Omega_{r, \varrho_{r}}, 0\right)=d\left(I-H(x, 0), \Omega_{r, \varrho_{r}}, 0\right)=1 \quad(\bmod 2) \tag{6}
\end{equation*}
$$

which implies the existence of a fixed point $x \in \Omega_{r, \varrho_{r}}$ of T.

Theorem 2. Let

(i) $\alpha \leq \beta, \alpha(t), \beta(t)$ be a lower and upper solution of (1), (2),
(ii) $\exists h \in C\left(R_{0}^{+},[a, \infty]\right)$ with $a>0$ satisfying (3) such that (4) holds for $t \in I, \alpha(t) \leq x \leq$ $\beta(t), y \in R$,
(iii) $G(b)<1$.

Then there exists a solution x of (1),(2) such that $\alpha(t) \leq x(t) \leq \beta(t)$.
Proof. Set $r=\max \{\|\alpha\|,\|\beta\|\}$. For $M>\max \left\{|f(t, x, y)| ; t \in I, \alpha(t) \leq x \leq \beta(t),|y|<\varrho_{r}\right\}$ we consider a perturbation

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f^{*}\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{7}
\end{equation*}
$$

of the equation (1) where

$$
f^{*}(t, x, y)= \begin{cases}f(t, \beta(t), y)+M(r-\beta(t))+M & x>r+1 \\ f(t, \beta(t), y)+M(x-\beta(t)) & \beta(t)<x \leq r+1 \\ f(t, x, y) & \alpha(t) \leq x \leq \beta(t) \\ f(t, \alpha(t), y)-M(\alpha(t)-x) & -r-1 \leq x<\alpha(t) \\ f(t, \alpha(t), y)-M-M(\alpha(t)+r) & x<-r-1\end{cases}
$$

Then for each $\varepsilon>0$

$$
\left(\Phi\left(\alpha^{\prime}(t)-\varepsilon\right)^{\prime}>f^{*}\left(t, \alpha(t)-\varepsilon, \Phi\left(\alpha^{\prime}(t)-\varepsilon\right)\right.\right.
$$

That means $\alpha(t)-\varepsilon$ is a strict lower solution of the BVP (7),(2). Similarly $\beta(t)+\varepsilon$ is a strict upper solution of (7), (2).

Moreover $-(r+1), r+1$ are also strict lower and upper solutions of (7), (2) and f^{*} satisfies (ii) of Theorem 2 with $h_{r+1}(s)=h(s)+(2 r+1) M$.

Theorem 2 implies the existence of a solution x of (7), (2) satisfying $|x(t)|<r+1$.
We prove that $x(t) \geq \alpha(t)$. Assuming the contrary we suppose that $\max (\alpha(t)-x(t))=\varepsilon>0$. But $\alpha(t)-\varepsilon$ is a strict lower solution which is in a contradiction with $\alpha\left(t_{0}\right)-\varepsilon=x\left(t_{0}\right)$ due to Lemma 2. Then $\alpha(t) \leq x(t)$. Similarly $x(t) \leq \beta(t)$. That means $f^{*}\left(t, x, \Phi\left(x^{\prime}\right)\right)=f\left(t, x, \Phi\left(x^{\prime}\right)\right)$ and $x(t)$ is also a solution of (1), (2).

Moreover (6) holds on the set $\Omega=\left\{x \in X ; \alpha<x<\beta,\left|x^{\prime}\right|<\varrho_{r+1}\right\}$

Theorem 3. Let

(i) $\alpha \not \leq \beta, \alpha(t), \beta(t)$ be strict lower and upper solutions of the problem (1), (2),
(ii) for each $r>0 \exists M_{r}>0$ such that $|f(t, x, y)| \leq M_{r}$ for each $t \in I,|x|<r, y \in R$,
(iii) $G(b)<1$.

Then there is a solution x of (1), (2), such that $\exists t_{a} \in I, \alpha\left(t_{a}\right)>x\left(t_{a}\right), \exists t_{b} \in I, x\left(t_{b}\right)>$ $\left.\beta\left(t_{b}\right)\right\}$.
Proof. Set $r_{0}=\max (\|\alpha\|,\|\beta\|), r>r_{0}+b \Phi^{-1}\left(2 M_{r} b\right)$.
We define a perturbation f^{*} by

$$
f^{*}(t, x, y)= \begin{cases}f(t, r, y)+M_{r} & x>r+1 \\ f(t, r, y)+M_{r}(x-r) & r<x \leq r+1 \\ f(t, x, y) & -r \leq x \leq r \\ f(t, r, y)+M_{r}(x+r) & -r-1 \leq x<-r \\ f(t, r, y)-M_{r} & x<-r-1\end{cases}
$$

As $f^{*}(t, r+1,0)=f(t, r, 0)+M_{r}>0, r+1$ is a strict upper solution of the problem

$$
\begin{align*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime} & =f^{*}\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{8}\\
x^{\prime}(0)=0, \quad x(b) & =\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{align*}
$$

Similarly $-r-1$ is a strict lower solution of (8), (2).
As $\left|f^{*}(t, x, y)\right|<2 M_{r} f^{*}$ satisfies conditions of Lemma 2. Theorem 1 implies the existence of a solution of (8), (2) and

$$
d\left(I-T^{*}, \Omega_{r+1, \rho}, 0\right)=1 \quad(\bmod 2)
$$

where T^{*} is defined by the same formulas as T replacing f by f^{*}.
Let now

$$
\Omega_{l}=\left\{x(t) \in \Omega_{r+1, \varrho}, \quad x<\beta\right\}, \quad \Omega_{u}=\left\{x(t) \in \Omega_{r+1, \varrho}, \quad \alpha<x\right\} .
$$

Then Theorem 2 and its proof imply $d\left(I-T^{*}, \Omega_{l}, 0\right)=d\left(I-T^{*}, \Omega_{u}, 0\right)=1(\bmod 2)$. Set $\Omega_{m}=\Omega_{r+1, \varrho} \backslash\left(\overline{\Omega_{l} \cup \Omega_{u}}\right)$. As $-r-1, \alpha$ are strict lower and $r+1, \beta$ are strict upper solutions, Lemma 1 implies there is no solution $x \in \partial \Omega_{m}$.

The additivity of the degree yields

$$
d\left(I-T^{*}, \Omega_{m}, 0\right)=1 \quad(\bmod 2)
$$

Let $x(t) \in \Omega_{m}$ be a solution of (10), (11). We will prove that $|x(t)|<r$. Suppose $\exists t, x(t)>r$. Then the definition of Ω_{m} implies $\exists t_{0}, x\left(t_{0}\right)=r_{0}$. Moreover $\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f^{*}\left(t, x, \Phi\left(x^{\prime}\right)\right)<2 M_{r}$. Integrating to t_{1}, the maximum of $x(t)$, we obtain $x^{\prime}(t)<\Phi^{-1}\left(2 M_{r} b\right)$ and $x(t)<x\left(t_{0}\right)+$ $b \Phi^{-1}\left(2 M_{r} b\right)=r$. Then $x(t)<r$ and similarly $x(t)>-r$. The definition of f^{*} implies $x(t)$ is a solution of (1), (2).

Multiplicity

The following two perturbation lemmas are based on Lemma 1.
Lemma 4. Let α be a strict lower solution of the problem (1), (2).
Set

$$
f_{\alpha}(t, x, y)=\left\{\begin{array}{l}
f(t, x, y) \quad x(t)>\alpha(t) \\
f(t, \alpha(t), y) \quad x(t) \leq \alpha(t)
\end{array}\right.
$$

Then each solution $x(t)$ of

$$
\begin{align*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime} & =f_{\alpha}\left(t, x, \Phi\left(x^{\prime}\right)\right) \tag{9}\\
x^{\prime}(0)=0, \quad x(b) & =\int_{0}^{b} x(s) d g(s)-k \Phi\left(x^{\prime}(b)\right) \tag{2}
\end{align*}
$$

is a solution of (1), (2).
Proof. Let $x(t)$ be a solution of (9), (2). Suppose that $m=\max (\alpha(t)-x(t)) \geq 0$. Then $\alpha(t)-m \leq x(t)$ and there is t_{0} such that $\alpha\left(t_{0}\right)-m=x\left(t_{0}\right)$. As $\alpha(t)-m$ is a strict lower solution of $(9),(2)$, we obtain a contradiction with Lemma 1.

Lemma 5. Let β be a strict upper solution of the problem (1), (2).
Set

$$
f_{\beta}(t, x, y)=\left\{\begin{array}{l}
f(t, x, y) \quad x(t)<\beta(t) \\
f(t, \beta(t), y) \quad x(t) \geq \beta(t) .
\end{array}\right.
$$

Then each solution $x(t)$ of

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{\beta}\left(t, x, \Phi\left(x^{\prime}\right)\right), \tag{2}
\end{equation*}
$$

is a solution of (1), (2).
The proof of the existence of multiple solutions is based on previous results.

Theorem 4. Let

(i) $\alpha<\beta, \alpha<\alpha_{1}, \alpha_{1} \not \leq \beta$, where α, α_{1} are strict lower solutions and β is a strict upper solution of the problem (1), (2),
(ii) $\exists M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, \alpha(t)<x, y \in R$,
(iii) $G(b)<1$.

Then the problem (1), (2) has at least two solutions.
Proof. Consider the problem (9), (2). Clearly $\left|f_{\alpha}\right|<M$. Theorem 2 implies the existence of a solution $x_{1}(t)$ of (9), (2), such that $\alpha<x_{1}<\beta$, and Theorem 3 implies the existence of a solution $x_{2}(t)$ such that $\left.\exists t_{b} \in I, x\left(t_{b}\right)>\beta\left(t_{b}\right)\right\}$. Lemma 4 implies x_{1}, x_{2} are solutions of (1), (2).

Theorem 5. Let
(i) $\alpha<\beta, \beta_{1}<\beta, \alpha \not \leq \beta_{1}$, where α is a strict lower solution and β, β_{1} are strict upper solutions of the problem (1), (2),
(ii) $\exists M>0$ such that $|f(t, x, y)| \leq M$ for each $t \in I, x<\beta(t), y \in R$,
(iii) $G(b)<1$.

Then the problem (1), (2) has at least two solutions.
Example. Consider the boundary value problem for the equation

$$
\begin{equation*}
\left(\Phi\left(x^{\prime}\right)\right)^{\prime}=f_{1}(t, x)+f_{2}\left(x^{\prime}\right)+h(t) . \tag{10}
\end{equation*}
$$

Assume that $f_{1}(t, x)$ is a continuous function such that

$$
\lim _{x \rightarrow-\infty} f_{1}(t, x)=\infty, \quad \lim _{x \rightarrow \infty} f_{1}(t, x)=-\infty,
$$

uniformly for $t \in I$, and there are constants $x_{1}, x_{2}, x_{1}<x_{2}$, such that $f_{1}\left(t, x_{1}\right)<f_{1}\left(t, x_{2}\right)$ for each $t \in I$. Further assume that f_{2} is a continuous bounded function.

Then for each $h(t)$ there is $r>\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ sufficiently large, such that $-r, r$ are strict lower and upper solutions of (10), (2). Moreover, for each $h(t)$ such that $f_{1}\left(t, x_{1}\right)<h(t)<f_{1}\left(t, x_{2}\right)$, x_{1} is a strict upper and x_{2} a strict lower solution of (10), (2).

Then for each $h(t), f_{1}\left(t, x_{1}\right)<h(t)<f_{1}\left(t, x_{2}\right)$, there are at least three solutions of the problem (10), (2).

For each $h(t), f 1\left(t, x_{1}\right) \leq h(t) \leq f_{1}\left(t, x_{2}\right)$, there are at least two solutions of the problem (10), (2).

Finally for each $h(t) \in C(I)$, exists a solution of (10), (2).

References

1. Gaines R., Mawhin J., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer Verlag, Berlin/New York, 1977.
2. Rachůnková I., Upper and Lower Solutions and Topological Degree, JMAA 234 (1998), 311-327.
3. Rachůnková I., Staněk S., Tvrdý M., Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations, in: Handbook of differential equations Elsevier, 2006.
4. Rudolf B., An existence and multiplicity result for a periodic boundary value problem, Mathematica Bohemica 133 (2008), 41-61.
5. Rudolf B., On a boundary value problem for differential equation with p-Laplacian., Tatra Mountains Math. Publ. 48 (2011), 189-195.
