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We denote by T the unit circle and by D the unit disc. Let B be
a Banach algebra with respect to the norm ‖ · ‖B which is a
subalgebra of the classical disc algebra A(D) and satifies the
following conditions:

(H1) The space of polynomials is a dense subset of B.

(H2) lim
n→∞

‖αn‖
1
n
B = 1 (α denotes the identity function z 7→ z).

(H3) There exist k ≥ 0 and C > 0 such that

|1− |λ||k‖f‖B ≤ C‖(α− λ)f‖B, f ∈ B, |λ| < 2.

Remark
We shall assume in the sequel that any Banach algebra B has a
unit 1B = 1 and that ‖1‖B = 1. Since the algebra A(D) is
semisimple the embedding B into A(D) is continuous.
Conditions (H1) and (H2) imply that the maximal ideal space
of the algebra B, M(B), can be identified with D via the
mapping z 7→ δz, where δz(f) = f(z). From this it follows that
the algebra B is semisimple.
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Agrafeuil and Zarrabi (2008) studied a structure of closed ideals
in algebras satisfying conditions (H1) – (H3). Earlier
Fǎıvyševskǐı (1973 – 74) also considered the same problem in
algebras satisfying similar assumptions.

In all mentioned cases it is assumed (in a more or less explicite
form) that a considered algebra B is embedded in the algebra
A(NB)(D) of functions analytic in D (with pointwise
multiplication) and of class C(NB) on the closed disc D for some
NB ∈ N0 = N ∪ {0}.

Moreover, it is assumed that the algebra B satisfies the analytic
Ditkin condition which says the following:

for every point z0 in the unit circle T and for every function f
from the algebra which satisfies f (j)(z0) = 0 for 0 ≤ j ≤ NB,
there exists in B a sequence (σn) such that σn(z0) = 0 all n and
lim
n→∞

‖σnf − f‖B = 0.
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If U is an inner function and f ∈ B the symbol U |f means that
U divides f , i.e. there exits a function ϕ ∈ H∞ such that
f = Uϕ.

We denote by UI the greatest common inner divisor of all
nonzero functions in I and we set

hj(I) = {z ∈ T : f(z) = f ′(z) = . . . = f (j)(z) = 0 for all f ∈ I}.

A closed ideal I of the algebra B is standard, if

I = {f ∈ B : UI |f and f (j)(z) = 0 for z ∈ hj(I), 0 ≤ j ≤ NB}.
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The following theorem is the principal result of the paper of
Agrafeuil and Zarrabi:

Theorem (AZ)

Let B be a subalgebra of the algebra A(D) which is a Banach
algebra endowed with the norm ‖ · ‖B. Suppose that B satisfies
conditions (H1)–(H3) and the analytic Ditkin condition. Let I
be a closed ideal in B such that the hull

h(I) = {z ∈ D : f(z) = 0 for f ∈ I}

is at most countable. Then the ideal I is standard.



The analytic Ditkin condition is a very strong assumption
which confines applicability of the theorem (AZ). We show a
simple example of a Banach algebra B of analytic functions in
the unit disc for which NB = 0 and in which Ditkin’s condition
does not hold. Therefore theorem (AZ) cannot be applied to
describe the structure of closed ideals with at most countable
hull in that algebra. On the other hand, a form of the closed
ideals with at most countable hull in that algebra is known and
all such ideals are standard.



Example

Let A
(1)
1 (D) be the space of functions f on D which are

(1) continuous on D, analytic on D,

(2) of class C(1) on D \ {1},
(3) satisfy limz→1(1− z)f ′(z) = 0.

We endowe the space A
(1)
1 (D) with the norm

‖f‖ = sup
z∈D
|f(z)|+ sup

z∈D\{1}
|(1− z)f ′(z)|.

By the maximum principle it follows that this norm coincides

on A
(1)
1 (D) with the norm

‖f‖T = sup
z∈T
|f(z)|+ sup

z∈T\{1}
|(1− z)f ′(z)|.
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It is easy to verify that the latter norm is submultiplicative for
all functions on T for which the right hand side of the formula
makes sense.

It is clear that the space A
(1)
1 (D) is a unital algebra with respect

to the pointwise multiplication. Moreover it is complete with

respect to the norm ‖ · ‖T. Hence A
(1)
1 (D) is a Banach algebra

continuously embedded in the disc algebra A(D).

The algebra A
(1)
1 (D) is only a very simple example of an algebra

which contains functions having certain properties of
differentiability at different boundary points of the unit disc.
Algebras of this form appear in a natural way as images of
Gelfand transforms of convolution algebras of the Sobolev type.
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We need the following properties of this algebra.

Proposition

(i) The space of polynomials is dense in A
(1)
1 (D).

(ii) limn→∞ ‖αn‖
1
n = 1.

(iii) |1− |λ||2‖f‖ ≤ 3‖(α− λ)f‖ for all f ∈ A
(1)
1 (D), |λ| < 2.



Proof.

(i) Galé and Wawrzyńczyk has proved that the space A
(1)
1 (D) is

isomorphic under the mapping f 7→ (1− α)f with a closed ideal
in the algebra A(1)(D) of functions analytic in D and of the
class C(1) on the closed disc. More exactly

(1− α)A
(1)
1 (D) = I1 = {g ∈ A(1)(D) : g(1) = 0}.

This implies (i).

(ii) By definition of the norm

‖αn‖ = ‖αn‖T = 1 + n sup
z∈T\{1}

|(1− z)zn−1| = 2n+ 1,

which gives (ii).
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(iii) For |λ| = 1 the inequality in (iii) is obvious. Let |λ| 6= 1.
We have

‖f‖ = ‖f‖T =

∥∥∥∥(α− λ)f
1

α− λ

∥∥∥∥
T
≤ ‖(α− λ)f‖T

∥∥∥∥ 1

α− λ

∥∥∥∥
T
.

Since∥∥∥∥ 1

α− λ

∥∥∥∥
T

= sup
z∈T

∣∣∣∣ 1

z − λ

∣∣∣∣ + sup
z∈T\{1}

∣∣∣∣ 1− z
(z − λ)2

∣∣∣∣ ≤ 1

|1− |λ||
+

2

|1− |λ||2

≤ 3

|1− |λ||2

property (iii) is proved.
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Hence the algebra A
(1)
1 (D) satisfies conditions (H1), (H2), and

(H3). The number NB = 0 for B = A
(1)
1 (D) since there are

elements of A
(1)
1 (D) which are not derivable at 1 (for example

the functions ϕn(z) = (1− z)
1
n defined by an appropiate branch

of logarithm).

The set

I1−1 = {f ∈ A
(1)
1 (D) : f(−1) = f ′(−1) = 0}

is obviously a closed ideal in A
(1)
1 (D) with the one-point hull

h(I1−1) = {−1}. However it does not have a standard form from
Theorem (AZ).

We see that in this case Theorem (AZ) does not work. The

reason for that is that the algebra A
(1)
1 (D) does not satisfy the

analytic Ditkin condition.
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We have proved that under a modified Ditkin’s condition and
suitably extended definition of a standard ideal the analogous
result to theorem (AZ) holds true.

We introduce the following two conditions:

(S) For every z0 ∈ T there exists N(z0) ∈ N0, the maximal
number amongst j ∈ N0 for which functionals
B 3 f 7→ f (j)(z0) are well-defined and continuous.

(D) For every z0 ∈ T there exists a sequence (ϕn) in the algebra
B such that ϕn(z0) = 0 for all n and

lim
n→∞

‖(α− z0)N(z0)+1ϕn − (α− z0)N(z0)+1‖B = 0.
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Remarks
1◦ Assumption (S) expresses the fact that functions from the
algebra B can have different kind of differentiability at points of
the unit circle.

2◦ Condition (D) is much easier to verify in concrete situations
than the analytic Ditkin condition because we have only to deal
with one given function. We call it the modified Ditkin
condition. Clearly it has a local character, i.e. it depends on the
degree of differentiability of functions from the algebra B at
different points of the unit circle.
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A closed ideal I of the algebra B is standard, according to our
definition, if there exist an inner function U and a descending
family of sets Hn ⊂ T, n ∈ N0, such that N(z) ≥ n for every
z ∈ Hn and

I = {f ∈ B : U |f and f (n)(z) = 0 for z ∈ Hn, n ∈ N0}.

We obtain the following theorem.

Theorem
If B is a subalgebra of the disc algebra A(D) which satisfies
conditions (H1), (H2), (H3), (S), and (D), then every closed
ideal I of B with the at most countable hull

h(I) = {z ∈ D : f(z) = 0 for f ∈ I}

is standard, i.e.

I = {f ∈ B : U |f and f (j)(z) = 0 for z ∈ hj(I), j ∈ N0}.
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Now we go back to the algebra B = A
(1)
1 (D) from the Example.

It is clear that it satisfies assumption (S). We have seen that

A
(1)
1 (D) does not satisfy the analytic Ditkin condition. Now we

prove that it satisfies the modified Ditkin condition (D).

First we show that this condition is satified at the point 1. We

take the following sequence of functions in A
(1)
1 (D) :

ϕn(z) = (1− z)
1
n .

(i) The functions ϕn(z) = (1− z)
1
n are bounded on D and tend

almost uniformly to 1 on D \ {1}. For |z − 1| < 1 we have
|ϕn(z)| < 1. Take arbitrary ε > 0. We may assume that ε < 1.
Then there exists n0 such that for all n ≥ n0 and |z − 1| ≥ 1

2ε
we have |ϕn(z)− 1| < 1

4ε. Since |z − 1| ≤ 2 for all z ∈ D we get

|(z − 1)(ϕn(z)− 1)| < ε

for all z ∈ D and n ≥ n0. This means that (z − 1)ϕn(z)→ z − 1
uniformly on D.
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(ii) Since

(1− z) ((z − 1) (ϕn(z)− 1))′ = (1− z)
((

1 +
1

n

)
ϕn(z)− 1

)
similar argument as in (i) shows that
(1− z) ((z − 1) (ϕn(z)− 1))′ → 0 uniformly on D.

From (i) and (ii) it follows that ‖(α− 1)ϕn − (α− 1)‖ → 0 as
n→∞, i.e. the modified Ditkin condition is satisfied at the
point 1.

If |z0| = 1 and z0 6= 1, then we take the functions

ψn(z) = (z0 − z)
1
n , and analogously as before show that

‖(α− z0)2ψn − (α− z0)2‖ → 0 as n→∞.
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