Complex numbers - Exercises with detailed solutions

1. Compute real and imaginary part of $z=\frac{i-4}{2 i-3}$.
2. Compute the absolute value and the conjugate of

$$
z=(1+i)^{6}, \quad w=i^{17}
$$

3. Write in the "algebraic" form $(a+i b)$ the following complex numbers

$$
z=i^{5}+i+1, \quad w=(3+3 i)^{8}
$$

4. Write in the "trigonometric" form $(\rho(\cos \theta+i \sin \theta))$ the following complex numbers
a) 8
b) $6 i$
c) $\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{7}$.
5. Simplify
(a) $\frac{1+i}{1-i}-(1+2 i)(2+2 i)+\frac{3-i}{1+i}$;
(b) $2 i(i-1)+(\overline{\sqrt{3}+i})^{3}+(1+i) \overline{(1+i)}$.
6. Compute the square roots of $z=-1-i$.
7. Compute the cube roots of $z=-8$.
8. Prove that there is no complex number such that $|z|-z=i$.
9. Find $z \in \mathbb{C}$ such that
a) $\bar{z}=i(z-1)$
b) $z^{2} \cdot \bar{z}=z$
c) $|z+3 i|=3|z|$.
10. Find $z \in \mathbb{C}$ such that $z^{2} \in \mathbb{R}$.
11. Find $z \in \mathbb{C}$ such that
(a) $\operatorname{Re}(z(1+i))+z \bar{z}=0$;
(b) $\operatorname{Re}\left(z^{2}\right)+i \operatorname{Im}(\bar{z}(1+2 i))=-3$;
(c) $\operatorname{Im}((2-i) z)=1$.
12. Find $a \in \mathbb{R}$ such that $z=-i$ is a root for the polynomial $P(z)=z^{3}-z^{2}+z+1+a$. Furthermore, for such value of a find the factors of $P(z)$ in \mathbb{R} and in \mathbb{C}.

Solutions

1. $z=\frac{i-4}{2 i-3}=\frac{i-4}{2 i-3} \cdot \frac{2 i+3}{2 i+3}=\frac{-2+3 i-8 i-12}{-4-9}=\frac{14}{13}+i \frac{5}{13}$ hence $\operatorname{Re}(z)=\frac{14}{13}$ and $\operatorname{Im}(z)=\frac{5}{13}$.
2. $\left.z=(1+i)^{6}=\left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{6}=8\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)\right)=-8 i$. Hence $|z|=8$ and $\bar{z}=8 i$. $w=i^{17}=i \cdot i^{16}=i \cdot\left(i^{4}\right)^{4}=i \cdot(1)^{4}=i$. Hence $|w|=1$ and $\bar{w}=-i$.
3. $i^{2}=-1, i^{3}=-i, i^{4}=1$ e $i^{5}=i$ then $z=i+i+1=1+2 i$.

For w, we write $3+3 i$ in the trigonometric form. We have $3+3 i=3 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$, hence

$$
(3+3 i)^{8}=3^{8} \cdot 2^{4}\left(\cos \left(8 \cdot \frac{\pi}{4}\right)+i \sin \left(8 \cdot \frac{\pi}{4}\right)\right)=16 \cdot 3^{8}(\cos 2 \pi+i \sin 2 \pi)=16 \cdot 3^{8} .
$$

4. If $z=a+i b, a, b \in \mathbb{R}$, its trigonometric form is

$$
z=\rho(\cos \theta+i \sin \theta), \quad \text { where } \rho:=\sqrt{a^{2}+b^{2}} \text { and } \theta \text { is such that } \cos \theta=\frac{a}{\rho}, \sin \theta=\frac{b}{\rho} .
$$

a) $a=8, b=0, \cos \theta=1$ e $\sin \theta=0$. Hence $8=8(\cos 0+i \sin 0)$.
b) $6 i=6(0+i)=6\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$.
c) We use the de Moivre's Formula:

$$
\left(\cos \left(\frac{\pi}{3}\right)-i \sin \left(\frac{\pi}{3}\right)\right)^{7}=\cos \frac{7 \pi}{3}-i \sin \frac{7 \pi}{3}=\cos 2 \pi+\frac{\pi}{3}-i \sin 2 \pi+\frac{\pi}{3}=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}
$$

5. (a) We compute

$$
\begin{aligned}
& \frac{1+i}{1-i}-(1+2 i)(2+2 i)+\frac{3-i}{1+i}=\frac{1+i}{1-i} \cdot \frac{1+i}{1+i}-(1+2 i)(2+2 i)+\frac{3-i}{1+i} \cdot \frac{1-i}{1-i} \\
= & i-2-2 i-4 i+4+\frac{3-1-3 i-i}{2}=i+2-6 i+\frac{2-4 i}{2}=2-5 i+1-2 i=3-7 i .
\end{aligned}
$$

(b) Since

$$
\begin{aligned}
(\overline{\sqrt{3}+i})^{3} & =(\sqrt{3}-i)^{3}=(\sqrt{3}-i)^{2}(\sqrt{3}-i)=(3-1-2 i \sqrt{3})(\sqrt{3}-i) \\
& =(2-2 i \sqrt{3})(\sqrt{3}-i)=2 \sqrt{3}-2 i-6 i-2 \sqrt{3}=-8 i
\end{aligned}
$$

we obtain

$$
2 i(i-1)+(\overline{\sqrt{3}+i})^{3}+(1+i) \overline{(1+i)}=-2-2 i-8 i+2=-10 i
$$

6. Every $z \in \mathbb{C}$ has n distinct roots of order n, which correspond (in the complex plane) to the vertices of a regular n-agon inscribed in the circle of radius $\sqrt[n]{|z|}$ centered at the origin.
When $z=\rho(\cos \theta+i \sin \theta)=\rho e^{i \theta}$, then the roots of order n of z are

$$
\sqrt[n]{\rho}\left(\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right)=\sqrt[n]{\rho} e^{\frac{\theta+2 k \pi}{n}} . \quad k=0,1,2, \ldots, n-1 .
$$

The square roots of $z=-1-i=\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$ are

$$
z_{1}=\sqrt[2]{\sqrt{2}}\left(\cos \left(\frac{\frac{5 \pi}{4}}{2}\right)+i \sin \left(\frac{\frac{5 \pi}{4}}{2}\right)\right)=\sqrt[4]{2}\left(\cos \frac{5 \pi}{8}+i \sin \frac{5 \pi}{8}\right) \text { and }
$$

$$
z_{2}=\sqrt[2]{\sqrt{2}}\left(\cos \left(\frac{\frac{5 \pi}{4}+2 \pi}{2}\right)+i \sin \left(\frac{\frac{5 \pi}{4}+2 \pi}{2}\right)\right)=\sqrt[4]{2}\left(\cos \frac{13 \pi}{8}+i \sin \frac{13 \pi}{8}\right)
$$

We could also argue as follows: the equation

$$
(x+i y)^{2}=-1-i
$$

is equivalent to the system

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=-1 \\
2 x y=-1
\end{array}\right.
$$

which admits solutions

$$
z= \pm\left(\sqrt{\frac{\sqrt{2}-1}{2}}-\frac{i}{2} \sqrt{\frac{2}{\sqrt{2}-1}}\right)
$$

which coincide with z_{1} and z_{2}.
7. The trigonometric form of $z=-8$, is $z=8(\cos \pi+i \sin \pi)$. Then

$$
\begin{gathered}
z_{1}=\sqrt[3]{8}\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right)=2\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right)=1+i \sqrt{3} \\
z_{2}=\sqrt[3]{8}(\cos \pi+i \sin \pi)=2(\cos \pi+i \sin \pi)=-2, \text { and } \\
z_{3}=\sqrt[3]{8}\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right)=2\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right)=1-i \sqrt{3}
\end{gathered}
$$

8. Suppose that some $z \in \mathbb{C}$ satisfies the equation. Then $|z|=\operatorname{Re}(z)+i(\operatorname{Im}(z)+1)$. Hence, since $|z| \in \mathbb{R}$, necessarily $\operatorname{Im}(z)=-1$. The equation then is $\sqrt{(\operatorname{Re}(z))^{2}+1}=\operatorname{Re}(z)$, and, squaring, we obtain $1=0$.
9. We will use the notation $z=a+i b, a, b \in \mathbb{R}$.
a) The equation becomes $a-i b=i(a+i b-1)$, that is $a-i b=-b+i(a-1)$. Then $a=-b$ and $-b=a-1$, which has no solution; We conclude that the equation has no solution.
b) The equation becomes $z \cdot(z \bar{z}-1)=0$. Hence a first solution is $z=0$, while the others satisfy $z \bar{z}=|z|^{2}=1$. Then also all the points of the circle of radius 1 centered at the origin satisfies the equation.
c) We square both terms and we obtain

$$
|z+3 i|^{2}=|a+i(b+3)|^{2}=a^{2}+(b+3)^{2}, \quad(3|z|)^{2}=9\left(a^{2}+b^{2}\right)
$$

Hence we have to solve the equation
$a^{2}+(b+3)^{2}=9\left(a^{2}+b^{2}\right) \quad \Leftrightarrow \quad 8\left(a^{2}+b^{2}\right)=6 b+9 \quad \Leftrightarrow \quad a^{2}+b^{2}-\frac{3}{4} b=\frac{9}{8} \quad \Leftrightarrow \quad a^{2}+\left(b-\frac{3}{8}\right)^{2}=\left(\frac{9}{8}\right)^{2}$.
Then the solution are all the points of the circle of radius $9 / 8$ centered at $(0,3 / 8)$.
10. If $z=a+i b, a, b \in \mathbb{R}$ then $z^{2} \in \mathbb{R}$ if and only if $a^{2}-b^{2}+2 i a b \in \mathbb{R}$, that is if and only if $a b=0$. Hence $z^{2} \in \mathbb{R}$ if and only if $z \in \mathbb{R}(b=0)$ or if z is a pure imaginary number $(a=0)$.
11. Let $z=a+i b, a, b \in \mathbb{R}$.
(a) $\operatorname{Re}(z(1+i))=\operatorname{Re}((a+i b)(1+i))=\operatorname{Re}(a-b+i(a+b))=a-b$. The equation is then equivalent to

$$
a-b+a^{2}+b^{2}=0 \quad \Leftrightarrow \quad\left(a+\frac{1}{2}\right)^{2}+\left(b-\frac{1}{2}\right)^{2}=\frac{1}{2}
$$

whose solutions are the points of the circle with center in $(-1 / 2,1 / 2)$ and radius $\sqrt{2} / 2$.
(b) Since $z^{2}=a^{2}-b^{2}+2 i a b$ and $\bar{z}(1+2 i)=(a-i b)(1+2 i)=a+2 b+i(2 a-b)$, the equation can be written as

$$
a^{2}-b^{2}+i(2 a-b)=-3,
$$

and we deduce $2 a=b$ and $a^{2}-b^{2}=-3$. The solution of this system are $z_{1}=1+2 i$ and $z_{2}=-1-2 i$, the unique solutions of the starting equation.
(c) Since $(2-i)(a+b i b)=2 a+b+i(2 b-a)$, the equation can be written as

$$
2 b-a=1
$$

whose solutions are the points of the line $x-2 y+1=0$.
12. If $z=-i$, then $z^{2}=-1, z^{3}=i$, and $P(-i)=i+1-i+1+a=2+a$. Then $-i$ is a root for P if and only if $a=-2$. Since $P(z)=z^{3}-z^{2}+z-1$ contains $z-1$, we have $P(z)=(z-1)(z-i)(z+i)$.

