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Abstract. We prove that every orthocomplete homogeneous effect algebra

is sharply dominating. Let us denote the greatest sharp element below x by
x↓. For every element x of an orthocomplete homogeneous effect algebra and

for every block B with x ∈ B, the interval [x↓, x] is a subset of B. For every

meager element (that means, an element x with x↓ = 0), the interval [0, x] is a
complete MV-effect algebra. As a consequence, the set of all meager elements

of an orthocomplete homogeneous effect algebra forms a commutative BCK-

algebra with the relative cancellation property. We prove that a complete
lattice ordered effect algebra E is completely determined by the complete or-

thomodular lattice S(E) of sharp elements, the BCK-algebra M(E) of meager

elements and a mapping h : S(E) → 2M(E) given by h(a) = [0, a] ∩M(E).

1. Introduction

Effect algebras have recently been introduced by Foulis and Bennett in [11] for
study of foundations of quantum mechanics. The class of effect algebras includes
orthomodular lattices and a subclass equivalent to MV-algebras (see [3]).

In [26], Riečanová proved that every lattice ordered effect algebra is a union of
(essentially) MV-algebras. This result is a generalization of the well-known fact
that every orthomodular lattice is a union of Boolean algebras. Later, Riečanová
and Jenča proved in [21] that the set of all sharp elements of a lattice ordered
effect algebra forms an orthomodular lattice. Both papers show that the class of
lattice ordered effect algebras generalizes the class of orthomodular lattices in a very
natural way. In [17] a new class, called homogeneous effect algebras was introduced
and most of the results from [26] and [21] were generalized for the homogeneous
case. The main result of [17] is that every homogeneous effect algebra is a union of
effect algebras satisfying the Riesz decomposition property.

Intuitively, one can consider the class of lattice ordered effect algebras as an
”unsharp” generalization of the class of orthomodular lattices and the class of ho-
mogeneous effect algebras as an ”unsharp” generalization of the class of orthoalge-
bras (see [12]). In these generalizations, the role of Boolean algebras is played by
MV-effect algebras and by effect algebras with the Riesz decomposition property.
The problems concerning this generalization were examined, for example, in [27]
and [18]. The present paper continues this line of research.

An element x of a lattice ordered effect algebra is sharp if and only if x∧x′ = 0.
If E is a complete lattice ordered effect algebra, then the set of all sharp elements
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S(E) forms a complete sublattice of E, closed under arbitrary joins and meets.
S(E) is a complete orthomodular lattice. Moreover, it is easy to check that every
x ∈ E allows for a unique decomposition x = xS ⊕ xM , where xS ∈ S(E) and 0
is the only sharp element under xM . Of course, this situation reminds one of the
well-known triple representation of Stone algebras, described by C.C. Chen and G.
Grätzer in their two-part paper [4], [5]. The main result of this paper is a proof of
a similar triple representation theorem for complete lattice ordered effect algebras.

2. Definition and basic relationships

An effect algebra is a partial algebra (E;⊕, 0, 1) with a binary partial operation
⊕ and two nullary operations 0, 1 satisfying the following conditions.

(E1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are defined

and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) If a⊕ b = a⊕ c, then b = c.
(E4) If a⊕ b = 0, then a = 0.
(E5) For every a ∈ E there is an a′ ∈ E such that a⊕ a′ = 1.
Effect algebras were introduced by Foulis and Bennett in their paper [11]. In the

original paper, a different but equivalent set of axioms was used.
In their paper [22], Chovanec and Kôpka introduced an essentially equivalent

structure called D-poset. Another equivalent structure was introduced by Giuntini
and Greuling in [13]. We refer to [10] for more information on effect algebras and
related topics.

A partial algebra (E;⊕, 0) satisfying the axioms (E1)-(E4) is called a generalized
effect algebra.

One can construct examples of effect algebras from an arbitrary partially ordered
abelian group (G,≤) in the following way: Choose any positive u ∈ G; then, for
0 ≤ a, b ≤ u, define a ⊕ b if and only if a + b ≤ u and put a ⊕ b = a + b. With
such partial operation ⊕, the interval [0, u] becomes an effect algebra ([0, u],⊕, 0, u).
Effect algebras which arise from partially ordered abelian groups in this way are
called interval effect algebras, see [1].

In a generalized effect algebra E, we write a ≤ b if and only if there is c ∈ E
such that a⊕ c = b. It is easy to check that for every effect algebra ≤ is a partial
order on E. Moreover, it is possible to introduce a new partial operation 	; b	 a
is defined if and only if a ≤ b and then a⊕ (b	 a) = b. It can be proved that, in an
effect algebra, a⊕ b is defined if and only if a ≤ b′ if and only if b ≤ a′. Therefore,
it is usual to denote the domain of ⊕ by ⊥. If a ⊥ b, we say that a and b are
orthogonal. We say that an element a is isotropic if and only if a ⊕ a exists. We
write shortly

n · a :=
n times︷ ︸︸ ︷

a⊕ · · · ⊕ a .

The number ι(a) = max{n ·a exists} is called the isotropic index of a. An isotropic
index of a nonzero element need not exist, since it may happen that n · a exists for
each n ∈ N. For such a, we write ι(a) = ∞. If for each nonzero a ∈ E we have
ι(a) < ∞, then we say that E is archimedean.

Let E be an effect algebra. Let E0 ⊆ E be such that 1 ∈ E0 and, for all a, b ∈ E0

with a ≥ b, a 	 b ∈ E0. Since a′ = 1 	 a and a ⊕ b = (a′ 	 b)′, E0 is closed with
respect to ⊕ and ′. We then say that (E0,⊕, 0, 1) is a sub-effect algebra of E.
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Another possibility to construct a substructure of an effect algebra E is to restrict
⊕ to a closed interval [0, a], where a ∈ E, letting a act as the unit element. We
denote such effect algebra by [0, a]E . Similarly, if P is a generalized effect algebra
and Q is a subset of P with the property x ∈ Q ⇒ [0, x] ⊆ Q, then the restriction
of ⊕ to Q is again a generalized effect algebra.

An ideal of a generalized effect algebra P is a subset I of P satisfying the con-
dition

a, b ∈ I and a ⊥ b ⇐⇒ a⊕ b ∈ I.

The set of all ideals of a generalized effect algebra P is denoted by I(P ). I(P ) is a
complete lattice with respect to inclusion.

An element c of an effect algebra is central (see [14]) if and only if [0, c] is an
ideal and, for every x ∈ E, there is a decomposition x = x1 ⊕ x2 such that x1 ≤ c,
x2 ≤ c′. It can be shown that this decomposition is unique. The set C(E) of all
central elements of an effect algebra is called the centre of E. C(E) is a Boolean
algebra. For every central element c of E, E is isomorphic to [0, c]E × [0, c′]E .

A D-poset is a system (P ;≤,	, 0, 1) consisting of a partially ordered set P
bounded by 0 and 1 with a partial binary operation 	 satisfying the following
conditions.

(D1) b	 a is defined if and only if a ≤ b.
(D2) If a ≤ b, then b	 a ≤ b and b	 (b	 a) = a.
(D3) If a ≤ b ≤ c, then c	 b ≤ c	 a and (c	 a)	 (c	 b) = b	 a.
There is a natural, one-to-one correspondence between D-posets and effect alge-

bras. Every effect algebra satisfies the conditions (D1)-(D3). When given a D-poset
(P ;≤,	, 0, 1), one can construct an effect algebra (P ;⊕, 0, 1): the domain of ⊕ is
given by the rule a ⊥ b if and only if a ≤ 1	b and we then have a⊕b = 1	((1	a)	b.
The resulting structure is then an effect algebra with the same 	 as the original
D-poset.

Let E1, E2 be effect algebras. A map φ : E1 7→ E2 is called a homomorphism of
effect algebras if and only if it satisfies the following condition.
(HE1) φ(1) = 1 and if a ⊥ b, then φ(a) ⊥ φ(b) and φ(a⊕ b) = φ(a)⊕ φ(b).
A homomorphism φ : E1 7→ E2 of effect algebras is called full if and only if the
following condition is satisfied.
(HE2) If φ(a) ⊥ φ(b) φ(a) ⊕ φ(b) ∈ φ(E1) then there exist a1, b1 ∈ E1 such that

a1 ⊥ b1, φ(a) = φ(a1) and φ(b) = φ(b1).
A bijective, full homomorphism is called an isomorphism of effect algebras.

Let D1, D2 be D-posets. We say that a mapping φ : D1 → D2 is a homomorphism
of D-posets if and only if it satisfies the following condition.
(HD1) φ(1) = 1 and if a ≤ b, than φ(a) ≤ φ(b) and φ(b	 a) = φ(b)	 φ(a).
A homomorphism of φ is an isomorphism of D-posets if and only if φ is surjective
and φ(a) ≤ φ(b) implies a ≤ b.

It is easy to check that φ is a homomorphism (isomorphism) of effect algebras if
and only if φ is a homomorphism (isomorphism) of corresponding D-posets.

Let us note that, for every closed subinterval [a, b] of an effect algebra, the
mapping x 7→ b	 (x	 a) is an antitone bijection. Thus, every closed subinterval of
an effect algebra is a self-dual poset.

An element x is sharp if and only if x ∧ x′ = 0. The set of all sharp elements of
an effect algebra E is denoted by S(E). An effect algebra E is sharply dominating
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if and only if, for every element x,

x↑ :=
∧
{t : t ∈ [x, 1] ∩ S(E)}

exists and is sharp. It is easy to see that in a sharply dominating effect algebra E,
the element

x↓ :=
∨
{t : t ∈ [0, x] ∩ S(E)}

exists and is sharp, for all x. Moreover, we have (x↑)′ = (x′)↓ and (x↓)′ = (x′)↑.
We say that x↑ is the sharp cover of x and that x↓ is the sharp kernel of x. In his
paper [2], Cattaneo proved that for every sharply dominating effect algebra the set
of all sharp elements forms a sub-effect algebra, which is an orthoalgebra. See [15]
for another version of the proof.

If E is an effect algebra such that (E,≤) is a lattice, we say that E is lattice
ordered.

A finite family of elements a = (a1, . . . , an) of an effect algebra is called orthog-
onal if and only if ⊕a = a1 ⊕ . . . ⊕ an is defined. An infinite family a = (ai)i∈S

is called orthogonal if and only if all finite subfamilies of A are orthogonal. An
orthogonal family a = (ai)i∈S is called summable if and only if⊕

a =
∨
{ai1 ⊕ . . .⊕ ain

: {i1, . . . , in} ⊆ S}

exists. An effect algebra E is called κ-orthocomplete if and only if every orthogo-
nal family of cardinality κ is summable. Every ℵ0-orthocomplete effect algebra is
archimedean. The following result was proved in [20] and [19].

Theorem 1. An effect algebra is κ-orthocomplete if and only if for every chain C
with card(C) = κ,

∨
C exists.

Note that Theorem 1 implies that a lattice ordered effect algebra E is orthocom-
plete if and only if E is a complete lattice.

Let E be a κ-complete effect algebra, let A ⊆ E. We write σκ(A) for the set of
all

⊕
i∈S(ai), where card(S) ≤ κ and (ai)i∈S is an orthogonal family of elements

of A.
A finite subset MF of an effect algebra E is called compatible with cover in X ⊆ E

if and only if there is a finite orthogonal family c = (c1, . . . , cn) with Ran(c) ⊆ X
such that for every a ∈ MF there is a set A ⊆ {1, . . . , n} with a =

⊕
i∈A ci. c

is then called an orthogonal cover of MF . A subset M of E is called compatible
with covers in X ⊆ E if and only if every finite subset of M is compatible with
cover in X. A subset M of E is called internally compatible if and only if M is
compatible with covers in M . A subset M of E is called compatible if and only if
M is compatible with covers in E. If {a, b} is a compatible set, we write a ↔ b. It
is easy to check that a ↔ b if and only if there are a1, b1, c ∈ E such that a1⊕c = a,
b1 ⊕ c = b, and a1 ⊕ b1 ⊕ c exists. We note that if a ≤ b or a ⊥ b then a ↔ b. In
a lattice ordered effect algebra, a ↔ b if and only if a 	 (a ∧ b) ≤ b′ if and only if
a	 (a ∧ b) ≤ b = (a ∨ b)	 b.

A subset M of E is called mutually compatible if and only if, for all a, b ∈ M , a ↔
b. Obviously, every compatible subset of an effect algebra is mutually compatible.
In the class of lattice ordered effect algebras, the converse also holds. It is well
known that a mutually compatible set need not to be compatible (see for example
[25]).
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An effect algebra satisfying a ⊥ a =⇒ a = 0 is called an orthoalgebra (see [12]).
An orthoalgebra is an orthomodular lattice if and only if it is lattice ordered. An
MV-effect algebra is a lattice-ordered effect algebra such that for all elements a, b we
have a ↔ b. Chovanec and Kôpka proved in [7] that there is a natural, one-to-one
correspondence between MV-algebras (introduced by Chang in [3]) and MV-effect
algebras. Every MV-effect algebra is an interval in a lattice ordered abelian group
(see [23]). We say that an effect algebra satisfies the Riesz decomposition property if
and only if, for all u, v1, . . . , vn ∈ E such that v1⊕. . .⊕vn exists and u ≤ v1⊕. . .⊕vn,
there are u1, . . . , un ∈ E such that,for all 1 ≤ i ≤ n, ui ≤ vi and u = u1 ⊕ . . .⊕ un.
It is easy to check that an effect algebra E has the Riesz decomposition property
if and only if E has the Riesz decomposition property with fixed n = 2. A lattice
ordered effect algebra E satisfies Riesz decomposition property if and only if E is
an MV-algebra. An orthoalgebra E satisfies the Riesz decomposition property if
and only if E is a Boolean algebra.

An effect algebra E is called homogeneous if and only if, for all u, v1, . . . , vn ∈ E
such that u ≤ v1 ⊕ · · · ⊕ vn ≤ u′, there are u1, . . . , un such that, for all 1 ≤ i ≤ n,
ui ≤ vi and u = u1 ⊕ · · · ⊕ un. Similarly as for the Riesz decomposition property,
an effect algebra is homogeneous if and only if it satisfies the homogeneity axiom
with n = 2.

Let E be a homogeneous effect algebra. A subeffect B of E is called a block if
and only if B is the maximal subeffect algebra of E with the Riesz decomposition
property.

The following proposition summarizes some of the results from [17].

Proposition 2.
(a) Every orthoalgebra is homogeneous.
(b) Every lattice ordered effect algebra is homogeneous.
(c) An effect algebra E has the Riesz decomposition property if and only if E

is homogeneous and compatible.
Let E be a homogeneous effect algebra.

(d) A subset B of E is a maximal sub-effect algebra of E with the Riesz de-
composition property (such B is called a block of E) if and only if B is a
maximal internally compatible subset of E.

(e) Every finite compatible subset of E is a subset of some block. This implies
that every homogeneous effect algebra is a union of its blocks.

(f) S(E) is a sub-effect algebra of E.
(g) For every block B, C(B) = S(E) ∩B.
(h) Let x ∈ B, where B is a block of E. Then {y : y ≤ x, x′} ⊆ B.

In the case of a lattice ordered effect algebra, the blocks are MV-effect algebras,
which are sublattices of E (see the main result of [26]). Every mutually compatible
subset of a lattice ordered effect algebra can be embedded into a block, hence the
blocks are exactly the maximal mutually compatible subsets. In particular, this
implies that if A = {a, b, c} is a mutually compatible subset, then the sublattice LA

generated by A is mutually compatible, and (since LA is a sublattice of some block
containing A) LA is a finite distributive lattice. Similarly, if we assume b ⊥ c, then
a ↔ b⊕ c.

For homogeneous effect algebras, the situation is a bit more complicated, since
we have to deal with internal compatibility if we want to prove that some set of
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elements is a subset of a block. However, Proposition 2 (e) shows that a finite set
of elemets is a subset of a block if and only if it is a compatible set.

As an example of application of the notion of internal compatibility, let us prove
the following Theorem.

Theorem 3. Every chain in a homogeneous effect algebra is a subset of a block.

Proof. Let E be a homogeneous effect algebra, let C ⊆ E be a chain. Without loss
of generality, suppose that 0 ∈ C. Let A = {x 	 y : y ≤ x and x, y ∈ C}. Since
0 ∈ C, C ⊆ A. We claim that A is internally compatible. Indeed, let AF be a
finite subset of A. There exists a finite chain CF ⊆ C such that AF ⊆ {x	 y : y ≤
x and x, y ∈ CF }. Write CF = {c1, . . . , cn}, where ci ≤ ci+1. Then the orthogonal
word c = (ci+1 	 ci : 1 ≤ i < n) is an orthogonal cover of AF , with Ran(c) ⊆ A.
Thus, A is internally compatible and, by Proposition 2 (d), A is a subset of a
block. �

For a lattice ordered effect algebra, S(E) is a sublattice of E (see [21]) and hence
an orthomodular lattice. If E is a complete lattice, then for every X ⊆ S(E),

∨
X

and
∧

X are sharp. Similarly, every block of E is closed under arbitrary joins and
meets. In particular, this implies that every complete lattice ordered effect algebra
is sharply dominating (see [21]).

Another type generalization of Riečanová’s results from [26] can be found in [8].

3. Sharp elements and infinite sums

The aim of this section is to prove that every orthocomplete homogeneous effect
algebra is sharply dominating and examine the behavior of sharp elements with
respect to blocks. The main tool we use are certain infinite sums of isotropic
elements. Let us introduce some closure operations defined on the set of all subsets
of an effect algebra.

Let E be a κ-orthocomplete effect algebra. Let us define a mapping θκ on the
system of all subsets of E as follows. We write θκ(v) for the set of all elements of
E of the form

⊕
i∈S(ui) or v 	

⊕
i∈S(ui), where card(S) ≤ κ and (ui)i∈S is an

orthogonal family satisfying
⊕

(ui)i∈S ≤ v and, for all i ∈ S, v ≤ u′i. For A ⊆ E,
we write θκ(A) =

⋃
v∈A θκ(v). For any set A, σκ

I (A) is the smallest superset of A

closed with respect to θκ. It is easy to check that σκ
I (A) =

⋃∞
n=0 Ai, where Ai are

subsets of E given by the rules A0 = A, An+1 = θκ(An).
For an orthocomplete effect algebra E and A ⊆ E, the symbols σ(A) and σI(A)

denote the union of all σκ(A) and σκ
I (A), respectively, where κ ≤ card(E).

Proposition 4. Let E be an κ-orthocomplete homogeneous effect algebra. Let
(vi)i∈S be an orthogonal family with card(S) = κ, u ∈ E be such that

u ≤
⊕
i∈S

(vi) ≤ u′.

Then there is an orthogonal family (ui)i∈S such that u =
⊕

i∈S(ui) and ui ≤ vi for
all i ∈ S.

Proof. By the well-ordering principle, we may assume that vi’s are indexed by
{α : α < δ}, where δ is an ordinal. Without loss of generality, we may assume that
v0 = 0. Let us put v =

⊕
(vα)α<δ.

It suffices to prove that there is an orthogonal family (uα)α<δ such that, for all
β < δ,
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(i) uβ ≤ vβ and
(ii) u	

⊕
α≤β(uα) ≤ v 	

⊕
α≤β(vα).

Indeed, since ∧
β<δ

(u	
⊕
α≤β

(uα)) = u	
∨
β<δ

⊕
α≤β

(uα) = u	
⊕
α<δ

(uα)

and similarly for the right-hand side of (2), it follows that

u	
⊕
α<δ

(uα) ≤ v 	
⊕
α<δ

(vα) = 0,

hence u =
⊕

α<δ(uα). Reindexing the uα’s and vα’s again by S, we obtain the
desired family (ui)i∈S and the proof is complete.

Let construct the family (uα)α<δ. For β = 0, we may put u0 = 0. Suppose that
γ > 0 and that (i) and (ii) are satisfied for all β < γ. Taking infima of both sides
of (ii) through all β < γ, we obtain

(1) u	
⊕
α<γ

(uα) ≤ v 	
⊕
α<γ

(vα).

Moreover,

v 	
⊕
α<γ

(vα) =(
⊕

γ≤α<δ

(vα)⊕
⊕
α<γ

(vα))	
⊕
α<γ

(vα) =
⊕

γ≤α<δ

(vα) =

=vγ ⊕
⊕

γ<α<δ

(vα) = vγ ⊕ (v 	
⊕
α≤γ

(vα))
(2)

and

(3) vγ ⊕ (v 	
⊕
α≤γ

(vα)) ≤ u′ ≤ (u	
⊕
α<γ

(uα))′.

From (1)-(3) we obtain

u	
⊕
α<γ

(uα) ≤ vγ ⊕ (v 	
⊕
α≤γ

(vα)) ≤ (u	
⊕
α<γ

(uα))′.

Since E is homogeneous, there are uγ , x ∈ E such that uγ ⊕ x = u 	
⊕

α<γ(uα),
uγ ≤ vγ and x ≤ v 	

⊕
α≤γ(vα). Thus,

u	
⊕
α≤γ

(uα) = (u	
⊕
α<γ

(uα))	 uγ = x ≤ v 	
⊕
α≤γ

(vα)

and the induction step is complete. �

Corollary 5. Let E be an κ-orthocomplete homogeneous effect algebra. Then
σκ(S(E)) = S(E). In particular, S(E) is κ-orthocomplete.

Proof. Let (vi)i∈S be an orthogonal family of sharp elements with card(S) = κ.
Let u ≤

⊕
i∈S(vi), u ≤ (

⊕
i∈S(vi))′. This is equivalent to

u ≤
⊕
i∈S

(vi) ≤ u′.

By Proposition 4, u =
⊕

i∈S(ui), where ui ≤ vi. Since, for all j ∈ S,

uj ≤ u ≤ (
⊕
i∈S

(vi))′ ≤ v′j
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and vj ∧ v′j = 0, uj = 0 and hence u = 0. �

Proposition 6. Let E be an κ-orthocomplete homogeneous effect algebra, let v1, v2 ∈
E. Let (ui)i∈S, where card(S) = κ, be an orthogonal family such that

⊕
i∈S(ui) ≤

v1⊕v2 and, for all i ∈ S, v1⊕v2 ≤ u′i. Then there are x1 ∈ θκ(v1), x2 ∈ θκ(v2) such
that x1 ≤ v1, x2 ≤ v2, v1 	 x1 ∈ θκ(v1), v2 	 x2 ∈ θκ(v2) and x1 ⊕ x2 =

⊕
i∈S(ui).

Proof. Let δ be an ordinal corresponding to κ. We may assume that the ui’s are
indexed by the set {α : α < δ}. Without loss of generality, we may assume that
u0 = 0.

We shall prove that there are families (x1
α)α<δ, (x2

α)α<δ such that for each β < δ,

(i) uβ = x1
β ⊕ x2

β and
(ii) For j = 1, 2,

⊕
α≤β(xj

α) ≤ vj .

For β = 0, we may put x1
0 = x2

0 = 0. Let γ > 0 and suppose that (i) and (ii) are
valid for all β < γ. Taking suprema of (ii) through all β < γ, we obtain for j = 1, 2⊕

α<γ

(xj
α) ≤ vj .

Since ⊕
α<δ

(uα) =
⊕
α<γ

(uα)⊕
⊕

γ≤α<δ

(uα) =
⊕
α<γ

(x1
α ⊕ x2

α)⊕
⊕

γ≤α<δ

(uα) =

=
⊕
α<γ

(x1
α)⊕

⊕
α<γ

(x2
α)⊕

⊕
γ≤α<δ

(uα) ≤ v1 ⊕ v2,

we have
uγ ≤ (v1 	

⊕
α<γ

(x1
α))⊕ (v2 	

⊕
α<γ

(x2
α)) ≤ v1 ⊕ v2 ≤ u′γ .

Therefore, there are x1
γ , x2

γ such that uγ = x1
γ ⊕ x2

γ and for j = 1, 2, xj
γ ≤ (vj 	⊕

α<γ(xj
α)). Hence,

⊕
α≤γ(xj

α) ≤ vj , j = 1, 2, and the induction is complete.
Let us put xj =

⊕
α<δ(x

j
α), where j = 1, 2. We have

⊕
α<δ(uα) = x1 ⊕ x2 and,

since
xj =

∨
β<δ

⊕
α≤β

xj
α,

we see that (ii) implies that x1 ≤ v1 and x2 ≤ v2.
Since, for each α < δ and for j = 1, 2, xj

α ≤ uα ≤ (v1 ⊕ v2)′ ≤ v′j , we have
xj , vj 	 xj ∈ θκ(vj). �

Corollary 7. Let E be an κ-orthocomplete homogeneous effect algebra, let v1, . . . , vk ∈
E. Let (ui)i∈S, where card(S) = κ, be an orthogonal family such that

⊕
i∈S(ui) ≤

v1 ⊕ · · · ⊕ vk and, for all i ∈ S, v1 ⊕ · · · ⊕ vk ≤ u′i. Then there are x1, . . . , xk such
that xj ≤ vj and xj , vj	xj ∈ θκ(vj) for j = 1, . . . , k and x1⊕· · ·⊕xk =

⊕
i∈S(ui).

Proof. The proof is a straightforward induction with respect to k and is therefore
omitted. �

Theorem 8. Let E be a κ-orthocomplete homogeneous effect algebra. For every
internally compatible subset A of E, σκ

I (A) is internally compatible.
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Proof. We have σκ
I (A) =

⋃∞
i=0 Ai, where A0 = A and An+1 = θκ(An). Since, for

all n ∈ N, An ⊆ An+1, every finite subset of σκ
I (A) can be embedded into some An.

Thus, it suffices to prove that every An is compatible with support in σκ
I (A). By

assumption, A0 = A is internally compatible. Assume that, for some n ∈ N, An is
compatible with support in σκ

I (A). Obviously, every finite subset of An+1 = θκ(An)
can be embedded into a subset Yk of the form

Yk = {
⊕
i∈S1

(u1
i ), v1 	

⊕
i∈S1

(u1
i ), . . . ,

⊕
i∈Sk

(uk
i ), vk 	

⊕
i∈Sk

(uk
i )},

where {v1, . . . , vk} ⊆ An and, for j = 1, . . . , k, card(Sj) ≤ κ, and (uj
i )i∈S is an

orthogonal family with vj ≤ u′i.
We now prove the following

Claim. Let Yk be as above. For every cover c0 of {v1, . . . , vk}, there is a refinement
w of c0 such that w covers Yk and Ran(w) ⊆ σκ

I ( Ran(c0)).
For k = 0, we may put w = c0. Assume that the Claim is satisfied for some

k. Let c0 be a cover of {v1, . . . , vk+1} ⊆ An. Since c0 is the cover {v1, . . . , vk}
as well, by the induction hypothesis there is a refinement of c0, say c1 such that
c1 covers Yk and Ran(c1) ⊆ σκ

I ( Ran(c0)). As c1 is a refinement of c0, c1 covers
{v1, . . . , vk+1}. Thus, there are (c1, . . . , cm) ⊆ c1 such that vk+1 = c1 ⊕ · · · ⊕ cm.
By Corollary 7, there are x1, . . . , xm such that

⊕
i∈Sk+1

(uk+1
i ) = x1⊕· · ·⊕xm and,

for all t = 1, . . . ,m, xt ≤ ct and xt, ct 	 xt ∈ θκ(ct). Let us construct a refinement
w of c1 by replacing each of the ct’s by the pair (xt, ct	xt). Then w is a refinement
of c0, w covers Yk+1 and

Ran(w) ⊆ θκ( Ran(c1)) ⊆ θκ(σκ
I ( Ran(c0))) = σκ

I ( Ran(c0)).

Let F be a finite subset of An+1. Then F can be embedded into some Yk ⊆ An+1.
By the outer induction hypothesis, An is compatible with covers in σκ

I (A), thus
{v1, . . . , vk} is compatible with cover in σκ

I (A). Let c be an orthogonal cover of
{v1, . . . , vk} with Ran(c) ⊆ σκ

I (A). By the Claim, there is a refinement w of c,
such that w covers Yk and Ran(w) ⊆ σκ

I ( Ran(c)) ⊆ σκ
I (A). Thus, F is compatible

with covers in σκ
I (A) and we see that σκ

I (A) is internally compatible. �

Corollary 9. Let E be a κ-orthocomplete homogeneous effect algebra. For every
block B of E, σκ

I (B) = B.

Proof. By Proposition 2, blocks of E coincide with maximal internally compatible
subsets of E containing 1. The rest follows by Theorem 8. �

Corollary 10. Let E be an orthocomplete homogeneous effect algebra. For every
block B of E, σI(B) = B.

Problem 11. Let E be an κ-orthocomplete homogeneous effect algebra, let A be
an internally compatible subset of E. Is it true that σκ(A) is internally compatible?
Equivalently, is it true that the blocks of E are closed with respect to σκ?

Proposition 12. Let E be a κ-orthocomplete homogeneous effect algebra, let x ∈ E
and let B be a block of E with x ∈ B. Let (xi)i∈S be an orthogonal family with
card(S) = κ such that, for all i ∈ S, xi ≤ x′ and

⊕
i∈S(xi) ≤ x. For every

u ≤
⊕

i∈S(xi) ≤ x, there exists a family (ui)i∈S such that u =
⊕

i∈S(ui) ∈ B and
for all i ∈ S, ui ≤ xi.
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Proof. We may suppose that the xi’s are indexed by {α : α < δ}, where δ is some
ordinal and that x0 = 0. It suffices to prove prove that there exists a family (uα)α<δ

such that, for each β < δ,
(i) uα ≤ xα

(ii) u	
⊕

α≤β(uα) ≤
⊕

α>β(xα).

This implies that u =
⊕

α<δ(uα) ∈ σκ
I (x), and we obtain u ∈ B by Corollary 9.

For β = 0, we may put u0 = 0. Suppose that γ > 0 and that (i) and (ii) are
satisfied for all β < γ. Similarly as in the proof of Proposition 4, we obtain

u	
⊕
α<γ

(uα) ≤
⊕
α≥γ

(xα)

. Since u ≤ x, there exists a block B with x, u ∈ B. By Corollary 9,
⊕

α<γ(uα),
⊕

α≥γ(xα) ∈
B. Since B satisfies the Riesz decomposition property, there exist uα, z such that
u	

⊕
α<γ(uα) = uα ⊕ z, uα ≤ xα and z ≤

⊕
α>γ(xα). It remains to observe that

z = u	
⊕

α≤γ(uα). �

Theorem 13. Let E be an orthocomplete homogeneous effect algebra, let x ∈ E.
Let (xi)i∈S be a maximal orthogonal family such that, for all i ∈ S, xi ≤ x′ and⊕

i∈S(xi) ≤ x. Then x↓ = x	
⊕

i∈S(xi).

Proof. Let us prove x	
⊕

i∈S(xi) ∈ ES first. Let r ∈ E be such that

r ≤ x	
⊕
i∈S

(xi), (x	
⊕
i∈S

(xi))′,

that means,
r ≤ x	

⊕
i∈S

(xi) ≤ r′.

This is equivalent to

r ≤ (x	
⊕
i∈S

(xi))′ = x′ ⊕
⊕
i∈S

(xi) ≤ r′,

hence there are r1, r2 ∈ E such that r1 ≤ x′, r2 ≤
⊕

i∈S(xi), r = r1 ⊕ r2. Since

r1 ≤ r ≤ x	
⊕
i∈S

(xi)

and
r1 ⊕

⊕
i∈S

(xi) ≤ x,

we have r1 = 0 by maximality of (xi)i∈S . Since

r2 ≤
⊕
i∈S

(xi) ≤ r′ ≤ r′2,

Theorem 4 implies that there is an orthogonal family (ui)i∈S such that r2 =⊕
i∈S(ui) and ui ≤ xi for all i ∈ S. For every i ∈ S we have

ui ≤ r2 ≤ r ≤ x	
⊕
i∈S

(xi),

hence
ui ⊕

⊕
i∈S

(xi) ≤ x.
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Since ui ≤ xi ≤ x′, this implies that, for all i ∈ S, ui = 0 and r2 = 0. Thus,
r = r1 ⊕ r2 = 0 and x	

⊕
i∈S(xi) ∈ ES .

Let t ∈ ES ∩ [0, x]. We shall prove that t ≤ x 	
⊕

i∈S(xi). Again, we may
suppose that the xi’s are indexed by {α : α < δ}, where δ is some ordinal. We shall
prove that, for all β < δ,

t ≤ x	
⊕
α≤β

(xα).

For β = 0, there is nothing to prove. Let γ < δ and suppose the induction hypoth-
esis for all β < γ. This implies that

t ≤ x	
⊕
α<γ

(xα) = (x	
⊕
α≤γ

(xα))⊕ xγ .

Since {x, t} is a finite compatible set, there exists a block B with x, t ∈ B. By
Theorem 8, x	

⊕
α≤γ(xα), xγ ∈ B. Therefore, t = t1⊕t2, where t1 ≤ x	

⊕
α≤γ(xα),

t2 ≤ xγ . However, since t2 ≤ xγ ≤ x′ ≤ t′ and t ∈ ES , we see that t2 = 0. This
completes the induction step.

It remains to observe that,

t ≤ x	
⊕
α<δ

(xα) = x	 (xi)i∈S .

�

Corollary 14. Every orthocomplete homogeneous effect algebra is sharply domi-
nating. Moreover, for every block B, x ∈ B implies that [x↓, x], [x, x↑] ⊆ B.

Proof. By Theorem 13 and Corollary 9, x↓ exists and x↓ ∈ B. For x↑ ∈ B, it
suffices to observe that x′ ∈ B and that x↑ = ((x′)↓)′. Let y ∈ [x↓, x]. Let (xi)i∈S

be as in Theorem 13. We have y 	 x↓ ≤
⊕

i∈S(xi). By Proposition 12, y 	 x↓ ∈ B

and hence y = x↓ ⊕ (y 	 x↓) ∈ B.
Let y ∈ [x, x↑]. This implies that y′ ≤ x′ and y′ ≥ (x↑)′ = (x′)↓. Since x ∈ B,

x′ ∈ B. By above part of the proof y′ ∈ [(x′)↓, x′] and x′ ∈ B imply that y′ ∈ B.
Since y′ ∈ B, y ∈ B. �

4. Meager and dense elements

Borrowing the terminology from the theory of Stone algebras, we say that an
element x of a homogeneous effect algebra is dense if and only if x↑ = 1. The set
of all dense elements of an effect algebra E is denoted by D(E). An element x of
an effect algebra is meager if and only if x↓ = 0. The set of all meager elements is
denoted by M(E). It is easy to check that

D(E) = {x′ : x ∈ M(E)}.

We note that, for a ∈ S(E), M([0, a]E) = M(E)∩ [0, a] and D([0, a]E) = {x : x↑ =
a}.

Proposition 15. Let E be a sharply dominating effect algebra. Then every x ∈ E
has a unique decomposition x = xS ⊕ xM , where xS ∈ S(E) and xM ∈ M(E).

Proof. The element x	x↓ is meager. Indeed, suppose that there is a sharp element
a with a ≤ x	 x↓. By [2], S(E) is a subeffect algebra of E. Therefore x↓ ⊕ a ∈ S.
However, since x↓ ⊕ a ≤ x, x↓ ⊕ a ≤ x↓. Thus a = 0.
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Suppose that there is a decomposition x = xS ⊕ xM with xS ∈ S(E) and
xM =∈ M(E). We have

x↓ ⊕ (x	 x↓) = x = xS ⊕ xM .

Since xS ≤ x↓, xM = (x↓	xS)⊕ (x	x↓). Since xM is meager and x↓	xS ∈ S(E),
x↓ 	 xS = 0. Thus, x↓ = xS and x	 x↓ = xM . �

Proposition 16. Let E be an orthocomplete homogeneous effect algebra, let x ∈
M(E). Then [0, x]E is a complete MV-effect algebra.

Proof. Obviously, [0, x]E is orthocomplete. Since (see [19]) every orthocomplete
effect algebra satisfying the Riesz decomposition property is a complete MV-effect
algebra, it suffices to prove that [0, x]E satisfies the Riesz decomposition property.
Let B be a block with x ∈ B. By Corollary 14, [0, x] ⊆ B. Since B satisfies the Riesz
decomposition property, [0, x]E satisfies the Riesz decomposition property. �

Proposition 17. For every orthocomplete homogeneous effect algebra, M(E) is a
meet semilattice.

Proof. Let x, y ∈ M(E). Since E is chain-complete, every lower bound of {x, y}
is under a maximal lower bound of {x, y}. Let z1, z2 be maximal lower bounds of
{x, y}. By Proposition 16, [0, x]E is an MV-effect algebra. Therefore, the elements
z1, z2 have a meet z1 ∧x z2 in [0, x]. Similarly, z1 ∧y z2 exists and it is easy to see
that z1 ∧x z2 = z1 ∧y z2. Since both [0, x]E and [0, y]E are MV-effect algebras, this
implies that

z1 ∨x z2 = z1 ⊕ (z2 	 (z1 ∧x z2)) = z1 ⊕ (z2 	 (z1 ∧y z2)) = z1 ∨y z2.

Since z1, z2 are maximal lower bounds of {x, y}, this implies that z1 = z2. �

Definition 18. [28] An algebra (X; ∗, 0) of type (2, 0) is a commutative BCK-
algebra if and only if the following conditions are satisfied.

(i) x ∗ (x ∗ y) = y ∗ (y ∗ x)
(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(iii) x ∗ x = 0
(iv) x ∗ 0 = x

On every commutative BCK-algebra X, we can define a partial order given by
the rule a ≤ b if and only if a ∗ b = 0. In this partial order, X is a lower semilattice
with 0.

An important subclass of commutative BCK-algebras is the class of commutative
BCK-algebras satisfying the relative cancellation property:

(v) For all a, x, y ∈ X, a ≤ x, y and x ∗ a = y ∗ a imply x = y.
The relative cancellation property was introduced in [9].

It follows from [24] that every MV-effect algebra is a commutative BCK-algebra
with the relative cancellation property when we define x∗y = x	(x∧y). Moreover,
every upper-bounded BCK-algebra arises from an MV-effect algebra in this way.

Proposition 19. Let E be an orthocomplete homogeneous effect algebra. For x, y ∈
M(E), define x ∗ y = x	 x ∧ y. Then (M(E); ∗, 0) is a commutative BCK-algebra
with the relative cancellation property.
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Proof.
(i): We have x∗(x∗y) = x	x∧(x∗y) = x	x∧(x	x∧y) = x	(x	x∧y) = x∧y.
(ii): Let us first note, that every interval [0, x] is a ∗-subalgebra of M(E) and,

since [0, x]E is an MV-effect algebra, ([0, x]; ∗, 0) is a commutative BCK-algebra.
Write yx = x ∧ y and zx = z ∧ y. We have

(x ∗ y) ∗ z = (x ∗ y)	 (x ∗ y) ∧ z = (x	 x ∧ y)	 (x	 x ∧ y) ∧ z =

= (x	 x ∧ yx)	 (x	 x ∧ yx) ∧ zx = (x ∗ yx) ∗ zx

and, similarly, (x∗ z)∗ y = (x∗ zx)∗ yx. Since [0, x] is a commutative BCK-algebra,
(x ∗ yx) ∗ zx = (x ∗ zx) ∗ yx.

The remaining conditions are clearly satisfied. �

Lemma 20. Let E be a complete MV-effect algebra, let u, v ∈ E, u ∧ v = 0. Then
u↑ ∧ v = 0.

Proof. We have u↑ 	 u =
⊕

i∈S ui, where ui ≤ u, u′. Suppose that w ≤ u↑, v. As
w ≤ u⊕ (u↑	u), there are y ≤ u, z ≤ u↑	u such that w = y⊕ z. Since u∧ v = 0,
y = 0. By Proposition 12 (put x := u′), z =

⊕
i∈S(zi) with zi ≤ u, u′. However,

for all i ∈ S, zi ≤ z ≤ w ≤ v and u ∧ v = 0, hence z = 0 and w = 0. �

Proposition 21. For every complete MV-effect algebra E, M(E) is a sublattice of
E.

Proof. By Proposition 17, M(E) is a meet subsemilattice of E. Let x, y ∈ M(E).
Let t ∈ S(E), t ≤ x ∨ y. Since E is a distributive lattice, there are u, v such that
u ≤ x, v ≤ y, t = u ∨ v. As t ∈ S(E),

0 = t ∧ t′ = (u ∨ v) ∧ (u ∨ v)′ = (u ∧ u′ ∧ v′) ∨ (v ∧ v′ ∧ u′) = 0

and we see that u ∧ u′ ∧ v′ = 0. By Lemma 20, (u ∧ u′) ∧ v′ = 0 implies that
(u∧u′)∧ (v′)↑ = 0. However, since v ∈ M(E), v′ ∈ D(E) and (v′)↑ = 1. Therefore,
u ∧ u′ = 0 and u = 0. Similarly, v = 0 and t = u ∨ v = 0. This implies that
(x ∨ y)↓ = 0, that means, x ∨ y ∈ M(E). �

Lemma 22. Let E be a complete lattice ordered effect algebra, let B be a block of
E. Then M(B) ⊆ M(E).

Proof. Let x ∈ M(B). Suppose that there is a ∈ S(B) ⊆ S(E) with a ≤ x. Then
a ≤ x↓. But x↓ ∈ B and x↓ ∈ S(B), hence x↓ = 0 and a = 0. �

Proposition 23. Let E be a complete lattice ordered effect algebra, let x, y ∈ M(E).
Then x ↔ y if and only if x ∨ y ∈ M(E).

Proof. Suppose that x ↔ y. Let B be a block of E with x, y ∈ B. Since B is a
complete MV-effect algebra, x ∨ y ∈ M(B) ⊆ M(E).

Suppose that x ∨ y ∈ M(E). By Proposition 16, [0, x ∨ y]E is an MV-effect
algebra. Therefore, x ↔ y. �

Proposition 24. Let E be a complete lattice ordered effect algebra, let x, y ∈ D(E).
Then x ↔ y if and only if x ∧ y ∈ D(E).

Proof. We have x′, y′ ∈ M(E) and x ↔ y if and only if x′ ↔ y′ if and only if
x′ ∨ y′ ∈ M(E) if and only if (x′ ∨ y′)′ = x ∧ y ∈ D(E). �
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5. A triple representation

In this section, E denotes a complete lattice ordered effect algebra. Let us
associate with E a triple (S(E),M(E), h), where h : S(E) → 2M(E) is given by
h(a) = {x ∈ M(E) : x ≤ a}. The aim of this section is to prove the following
theorem.

Theorem 25. The triple (S(E),M(E), h) characterizes E up to isomorphism.

To prove it, we shall construct a isomorphic copy of the original effect algebra
E from the triple. To construct a isomorphic copy of E, we need to construct the
following mappings in terms of the triple.

(M1) The mapping ↑ : M(E) → S(E).
(M2) For every a ∈ S(E), a mapping M(E) → h(a), which is given by x 7→ x∧a.
(M3) The mapping S : M(E) → M(E) given by S(x) = x↑ 	 x.

The first mapping (M1) is easy to reconstruct: it is clear that, for all x ∈ M(E),

x↑ =
∧
{a ∈ S(E) : x ∈ h(a)}.

Let us proceed with the mapping (M2). We recall (see [16]), that a subcentral
ideal of a generalized effect algebra P is an ideal I such that there exists an ideal I ′,
called the complement of I such that for all x ∈ P there is a unique decomposition
x = xI ⊕ xI′ , where xI ∈ I, xI′ ∈ I ′. The set of all subcentral ideals is denoted
by SCI(P ). As a sublattice of I(P ), SCI(P ) is a Boolean lattice. It follows from
the results of [16] and [6] that the ideal lattice of every generalized effect algebra P
satisfying the Riesz decomposition property is distributive and that SCI(P ) is the
centre of the ideal lattice of P .

The uniqueness of the decomposition x = xI ⊕ xI′ allows us to associate with
every subcentral ideal I a projection mapping πI : P → I given by πI(x) = xI .
This mapping is a morphism of generalized effect algebras.

Proposition 26. For every a ∈ S(E), h(a) is a subcentral ideal of M(E). More-
over, for all y ∈ M(E), πh(a)(y) = y ∧ a.

Proof. By the remarks in the previous paragraph, it suffices to prove that h(a) is
a complemented element of I(M(E)). Let us prove that h(a) ∈ I(M(E)). Let
x1, x2 ∈ h(a), x1 ⊥M(E) x2. Since {a, x1, x2} is a mutually compatible set, there
exists a block B ⊇ {a, x1, x2} and we have x1 ⊕ x2 ∈ B. Since a ∈ S(E) ∩ B,
a ∈ C(B) and [0, a]∩B is an ideal of B. Therefore, x1⊕x2 ≤ a and x1⊕x2 ∈ h(a).

Let us prove that there is a complement of h(a) in the ideal lattice of M(E). We
claim that

I := {x ∈ M(E) : x ∧ a = 0}
is the complement of h(a). Obviously, h(a)∩ I = {0}. It remains to prove that I is
an ideal of M(E) and that, in the lattice I(M(E)), h(a)∨I = M(E). Let y1, y2 ∈ I,
y1 ⊥M(E) y2. Suppose that x ≤ y1⊕y2, x ≤ a. Since [0, y1⊕y2]E satisfies the Riesz
decomposition property, there are x1 ≤ y1, x2 ≤ y2 such that x = x1 ⊕ x2. Since
y1 ∧ a = y2 ∧ a = 0, we see that x1 = x2 = 0. Thus, (y1 ⊕ y2) ∧ a = 0, y1 ⊕ y2 ∈ I
and I is an ideal of M(E).

Let y ∈ M(E). Then y = (a ∧ y)⊕ [y 	 (a ∧ y)]. We claim that y 	 (a ∧ y) ∈ I.
Suppose that x ≤ a, x ≤ y 	 (a ∧ y). As x ⊥ a ∧ y, x ≤ a and a ∧ y ≤ y, the
set {a, x, a ∧ y} is mutually compatible and can be embedded into a block B. We
see that x ⊕ (a ∧ y) ≤ y. Since a is sharp, a is central in B and [0, a]B is an
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ideal of B. Thus x ⊕ (a ∧ y) ≤ a and x ≤ y 	 (a ∧ y), a 	 (a ∧ y). However,
[y	 (a∧ y)]∧ [a	 (a∧ y)] = 0, so x = 0. We have proved that [y	 (a∧ y)]∧ a = 0,
that means, y 	 (a ∧ y) ∈ I. Thus, every y ∈ M(E) is a sum of a ∧ y ∈ h(a) and
y 	 (a ∧ y) ∈ I. This implies that h(a) ∨ I = M(E). Note that we have proved
πh(a)(y) = y ∧ a as well. �

Proposition 26 shows that the mapping (M2) is equal to πh(a). Since πh(a) is
given in terms of the triple, we can construct the mapping (M2) from the triple.

Let us proceed with the mapping (M3). To simplify the proof, let us first deal
with the case x↑ = 1.

Lemma 27. Let E be a complete lattice ordered effect algebra, let x ∈ M(E)∩D(E).
Then y = x′ is the only element such that

(i) y ∈ M(E) ∩D(E)
(ii) y ↔M(E) x
(iii) For all z ∈ M(E), z ⊥M(E) x if and only if z ≤ y and y 	 z ∈ D(E).

Proof. Let us prove that y = x′ satisfies (i)–(iii). Clearly, (i) is satisfied. By
Corollary 23, x ↔ x′ implies that x ∨ x′ ∈ M(E). By Proposition 16, x, x′ are
compatible in [0, x∨x′]E and hence also in M(E). We see that y = x′ satisfies (ii).
To prove (iii), let z ∈ M(E) and suppose that z ⊥M(E) x. As z ⊥ x, z ≤ x′. As
x ⊕ z ∈ M(E), (x ⊕ z)′ = x′ 	 z ∈ D(E). The proof of the reverse implication of
(iii) is similar.

Let us prove that x′ = y is the only element satisfying (i)-(iii). Let y1, y2 be
such that for y = y1, y2 (i) and (iii) are satisfied and suppose that y1 ↔ y2. Put
t := y1 	 (y1 ∧ y2). We shall prove the following Claim.

Claim. For all n ∈ N, x ⊥M(E) n · t and n · t ≤ y1, y2.
Proof of the Claim. For n = 0, there is nothing to prove. Suppose that the

Claim is true for some n ∈ N. Note that

t = y1 	 (y1 ∧ y2) = (y1 	 n · t)	 [(y1 	 n · t) ∧ (y2 	 n · t)].
This implies that t ≤ y1 	 n · t and (n + 1) · t ≤ y1. Moreover,

y1 	 (n + 1) · t = (y1 	 n · t)	 t = (y1 	 n · t) ∧ (y2 	 n · t).
As x ⊥M(E) n · t and (iii) is satisfied for y = y1, y2, we see that y1 	 n · t, y2 	 n · t
are dense. Since y1 	 n · t ↔ y2 	 n · t, we may apply Corollary 24 to prove that
(y1 	 n · t) ∧ (y2 	 n · t) = y1 	 (n + 1) · t ∈ D(E). Therefore, x ⊥M(E) (n + 1) · t.

Since y = y2 satisfies (iii), this implies that (n + 1) · t ≤ y2 and the Claim is
proved.

Since E is orthocomplete, E is archimedean. Thus, the existence of n · t for all
n ∈ N implies that t = 0. We have proved that y1 	 (y1 ∧ y2) = 0, that means,
y1 ≤ y2. We omit the proof of y2 ≤ y1, because it is completely symmetric to the
above proof. We see that y1 = y2

Suppose that some y satisfies (i)–(iii) and put y1 := y, y2 = x′. It follows that
y = x′. �

Corollary 28. Let E be a complete MV-effect algebra and let x ∈ M(E). Then
y = x↑ 	 x is the only element satisfying the conditions

(i) y ∈ h(x↑), y↑ = x↑.
(ii) y ↔h(x↑) x

(iii) For all z ∈ h(x↑), z ⊥h(x↑) x if and only if z ≤ y and (y 	 z)↑ = x↑.
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Proof. This is just Lemma 27 applied to the effect algebra [0, x↑]E . �

Corollary 28 shows that it is possible to express the mapping (M3) in terms of
the triple. We now prove that we can construct an isomorphic copy of E from the
triple. In our construction, we use only the mappings (M1)-(M3).

Theorem 29. Let E be a complete lattice ordered effect algebra. Let T (E) be a
subset of S(E)×M(E) given by

T (E) = {〈wS , wM 〉 : wM ∈ h(wS
′)}.

Equip T (E) with a relation ≤ given by 〈uS , uM 〉 ≤ 〈vS , vM 〉 if and only if uS ≤ vS

and uM 	 πh(vS)(uM ) ≤ vM and define a partial operation 	 with domain ≤ given
by 〈vS , vM 〉 	 〈uS , uM 〉 = 〈wS , wM 〉, where

wS = (vS 	 uS)	 [πh(vS)(uM )]↑

and
wM = S(πh(vS)(uM ))⊕ (vM 	 (uM 	 πh(vS)(uM ))).

Then (T (E),≤,	) is a D-poset and the mapping φ : E → T (E) given by φ(u) =
〈u↓, u	 u↓〉 is an isomorphism of D-posets.

Proof. Obviously, φ is surjective. It remains to prove that u ≤ v if and only if
φ(u) ≤ φ(v) and that φ(v 	 u) = φ(v)	 φ(u).

Suppose that u ≤ v. We write φ(u) = 〈uS , uM 〉 and φ(v) = 〈vS , vM 〉. Since
u ≤ v, there is a block B ⊇ {u, v}. By Corollary 14, {u↓, u↑, v↓, v↑} ⊆ B.

Obviously, uS ≤ vS . We have

u = (u	 u↓)⊕ u↓ = uM ⊕ uS = [uM 	 (uM ∧ vS)]⊕ (uM ∧ vS)⊕ uS

In particular,

(4) uM 	 (uM ∧ vS) = uM 	 πh(vS)(uM ) ≤ u ≤ v = vM ⊕ vS .

Since B is a sublattice and subeffect algebra of E, the values of all subexpressions
occurring in (4) are elements of B and we may apply the Riesz decomposition
property:

uM 	 (uM ∧ vS) = w1 ⊕ w2,

where w1 ≤ vM and w2 ≤ vS . Since B is an MV-effect algebra, uM ↔ vS , that
means, uM 	 (uM ∧ vS) ≤ vS

′. Since vS is sharp, w2 = 0. Therefore, uM 	 (uM ∧
vS) = w1 ≤ vM .

Suppose that uS ≤ vS and that uM 	 (uM ∧ vS) ≤ vM . We need to prove that
u ≤ v. As

(5) u = [uM 	 (uM ∧ vS)]⊕ (uM ∧ vS)⊕ uS

and

(6) v = vS ⊕ vM = (vS 	 uS)⊕ uS ⊕ vM ,

it suffices to prove that uM ∧ vS ≤ vS 	 uS .
We see that

uM ∧ vS = uM ∧ [(vS 	 uS)⊕ uS ] = uM ∧ [(vS 	 uS) ∨ uS ] =

= [uM ∧ (vS 	 uS)] ∨ (uM ∧ uS).

However, uM ∧ uS = 0.
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We have proved that u ≤ v if and only if φ(u) ≤ φ(v). This implies that φ is
injective. Let us prove that φ preserver 	. Again, suppose that u ≤ v. By (5) and
(6),

(7) v 	 u = [(vS 	 uS)⊕ vM ]	 ((uM ∧ vS)⊕ [uM 	 (uM ∧ vS)]).

Since u ≤ v, uM 	 (uM ∧ vS)]. From (7),

uM ∧ vS ≤ (vS 	 uS)⊕ vM .

By the Riesz decomposition property, there are w1 ≤ vS 	 uS and w2 ≤ vM such
that uM∧vS = w1⊕w2. Since vS∧vM = 0, w2 = 0. This implies that uM∧vS ≤ vM

and the equality (7) transforms to

(8) v 	 u = [(vS 	 uS)	 (uM ∧ vS)]⊕ [vM 	 [uM 	 (uM ∧ vS)]].

We note that the summands of the right-hand side of (8) are disjoint. As (uM ∧
vS)↑ ≤ vS 	 uS , we can write

(9) (vS 	 uS)	 (uM ∧ vS) = [(vS 	 uS)	 (uM ∧ vS)↑]⊕ [(uM ∧ vS)↑	 (uM ∧ vS)].

Let us put

s = (vS 	 uS)	 (uM ∧ vS)↑ = (vS 	 uS)	 [πh(vS)(uM )]↑,

m1 = (uM ∧ vS)↑ 	 (uM ∧ vS) = S(πh(vS)(uM ))
and

m2 = vM 	 [uM 	 (uM ∧ vS)] = vM 	 (uM 	 πh(v↑)(uM )).
By (8) and (9), v 	 u = s ⊕m1 ⊕m2. We see that φ(u) 	 φ(v) = 〈s,m1 ⊕m2〉.
It remains to prove that m1 ⊕m2 is meager. Obviously, m1 and m2 are meager.
Since m1 ≤ vS and m2 ≤ vM , m1 ∧m2 = 0. Therefore, m1 ⊕m2 = m1 ∨m2. By
Lemma 23, m1 ∨m2 ∈ M(E). �

6. Concluding remarks

It would be interesting to know in what classes of lattice ordered effect algebras
Theorem 29 holds. The kernel of the present proof is (quite obviously) making use
of the fact that in an orthocomplete homogeneous effect algebra we may reach the
element y 	 y↓ by summing up the elements which are below y, y↓. This technique
does not work for all sharply dominating homogeneous effect algebras.

Example 30. Let E be the MV-effect algebra of all continuous functions [0, 1] →
[0, 1], equipped with the usual addition of functions restricted to E. Note that
S(E) = {0, 1}. For the meager element f given by f(x) = x we have f↓ = 0,
but f 	 f↑ = f cannot be reached by summing up the functions from the set
{g : g ≤ f, f ′}, because we have g(1) = 0 for every g.

Note that, in Example 30, we can overcome this difficulty by extending E
to the (still incomplete) MV-effect algebra of all piecewise continuous functions
[0, 1] → [0, 1]. This shows that there is probably some class of triple-representable
lattice ordered effect algebras strictly between the complete class and the sharply
dominating class.

Another open question is whether it is possible to extend Theorem 29 to the
class of orthocomplete homogeneous effect algebras. Here, the first principal diffi-
culty we can see is Proposition 26, which is generally not true in an orthocomplete
homogeneous effect algebra, since h(a) needs not to be an ideal.
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[6] G. Chevalier and S.Pulmannová, ‘Some ideal lattices in partial abelian monoids.’ preprint,

Mathematical Institute of Slovak Academy of Sciences, Bratislava, (1998).
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