# The block structure of complete lattice ordered effect algebras 

G. Jenča

Department of Mathematics<br>Slovak Technical University

Quantum Structures 2006

## Effect Algebras

Foulis and Bennett 1994; Kôpka and Chovanec 1994; Giuntini and Greuling 1989

An effect algebra is a partial algebra $(E ; \oplus, 0,1)$ satisfying the following conditions.
(E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b=b \oplus a$.
(E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus(b \oplus c)$ are defined and $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
(E3) For every $a \in E$ there is a unique $a^{\prime} \in E$ such that $a \oplus a^{\prime}=1$.
(E4) If $a \oplus 1$ exists, then $a=0$

## Basic Relationships

Let $E$ be an effect algebra.

- Cancellativity: $a \oplus b=a \oplus c \Rightarrow b=c$.
- Partial difference: If $a \oplus b=c$ then we write $a=c \ominus b$. $\ominus$ is well defined and $a^{\prime}=1 \ominus a$.
- Poset: Write $b \leq c$ iff $\exists a: a \oplus b=c ;(E, \leq)$ is then a bounded poset.
- Domain of $\oplus: a \oplus b$ is defined iff $a \leq b^{\prime}$ iff $b \leq a^{\prime}$.


## Subalgebras and morphisms

## Definition

Let $E$ be an effect algebra. A subset $F \subseteq E$ is a subeffect algebra of $E$ iff

- $1 \in F$ and
- for all $a, b \in F$ such that $a \ominus b$ exists, $a \ominus b \in F$.
- If $F$ is a subeffect algebra of $E$, then $0 \in F$ and $F$ is closed with respect to $\oplus$ and the ' operations.


## Definition

Let $E, F$ be effect algebras, let $\phi: E \rightarrow F$. We say that $\phi$ is a morphism of effect algebras iff

- $\phi(1)=1$ and
- for all $a, b \in E$ such that $a \oplus b$ exists in $E, \phi(a) \oplus \phi(b)$ exists in $F$ and $\phi(a \oplus b)=\phi(a) \oplus \phi(b)$


## Classes of Effect Algebras

- An effect algebra is an orthomodular lattice iff it is lattice ordered and, for all elements $a, a \wedge a^{\prime}=0$.
- A lattice-ordered effect algebra is an MV-effect algebra iff $a \wedge b=0$ implies that $a \oplus b$ exists.


## Sharp Elements

- An element a of an effect algebra is called sharp iff $a \wedge a^{\prime}=0$.
- We write $S(E)$ for the set of of all sharp elements of an effect algebra.
- (Jenča and Riečanová 1999) The set of all sharp elements of a lattice ordered effect algebra $E$ forms an orthomodular lattice which is a subeffect algebra and a sublattice of $E$.


## Blocks of Lattice Ordered Effect algebras

- (Riečanová 1999) Every lattice ordered effect algebra is a union of maximal sub-effect algebras which are MV-effect algebras.
- This result is a generalization of the well-known fact that every orthomodular lattice is a union of its blocks. Hence the following definition is natural.


## Definition

Let $E$ be a lattice ordered effect algebra. A block of $E$ is a maximal sub-effect algebra of $E$ which is an MV-effect algebra.

- (Riečanová 1999) A subset $M$ of a lattice ordered effect algebra is a block iff $M$ is a maximal subset with respect to the compatibility condition

$$
\forall a, b \in M: a \ominus(a \wedge b)=(a \vee b) \ominus b
$$

## Example 1

The diamond


$$
a \oplus a=b \oplus b=1
$$

- $S(E)$ is a Boolean algebra, but $E$ has two blocks.
- For any block $B$ of $E, S(E) \cap B$ is a block of $S(E)$.


## Example 2

 Very simple

$$
a \oplus b=c \oplus c=1
$$

- There are two blocks here, a Boolean algebra $2^{2}$ and a 3-element chain $C_{3}$.
- We see that $C_{3} \cap S(E)=\{0,1\}$ is not a block of $S(E)$.


## Blocks of $E$ and blocks of $S(E)$

Every block of $S(E)$ is the center of some block of $E$

Theorem (Jenča and Riečanová 1999)
Let $E$ be a lattice ordered effect algebra. $B$ be a block of $S(E)$. Then there is a block $M$ of $E$ such that $M \cap S(E)=B$.

## Connecting OMLs and finite Lattice Ordered EAs A simple example



$$
a \oplus a=b \oplus b=1
$$

## Connecting OMLs and finite Lattice Ordered EAs A simple example



$$
a \oplus a=b \oplus b=1
$$

$$
a_{1} \oplus a_{2}=b_{1} \oplus b_{2}=1
$$

## Connecting OMLs and finite Lattice Ordered EAs

 A simple example
$a \oplus a=b \oplus b=1$

$a_{1} \oplus a_{2}=b_{1} \oplus b_{2}=1$

## Connecting OMLs and finite Lattice Ordered EAs A simple example

 $\phi$
$a \oplus a=b \oplus b=1$
$a_{1} \oplus a_{2}=b_{1} \oplus b_{2}=1$

## Connecting OMLs and finite Lattice Ordered EAs

Theorem (Jenča 2003)
For every finite lattice ordered effect algebra $E$, there is a finite orthomodular lattice $O(E)$ and a surjective morphism of effect algebras $\phi: O(E) \rightarrow E$ such that

- for every block $B$ of $O(E), \phi(B)$ is a block of $E$ and
- for every block $M$ of $E, \phi^{-1}(M)$ is a block of $O(E)$.

Moreover (unpublished), there is a bounded injective lattice morphism $\phi^{*}: E \rightarrow O(E)$ such that, for all $x \in E, \phi\left(\phi^{*}(x)\right)=x$.

## Connecting OMLs and finite Lattice Ordered EAs

 The bounded lattice embedding

## Connecting BAs and MV-effect algebras

## R-generated Boolean algebras

Let $L$ be a bounded distributive lattice. Recall, that a Boolean algebra $R$-generated by $L$ is a Boolean algebra $B(L)$ such that

- L is a 0,1 -sublattice of $B(L)$ and
- L generates $B(L)$, as a Boolean algebra.

These properties determine $B(L)$, up to isomorphism.

## Connecting BAs and MV-effect algebras

## R-generated Boolean algebras

Theorem
For every $M V$-effect algebra $M$ there is a surjective morphism of effect algebras $\phi: B(M) \rightarrow M$ and a bounded lattice embedding $\phi^{*}: M \rightarrow B(M)$ such that the diagram

commutes.

## Example - the Real Unit Interval

 The Boolean algebra R-generated by $[0,1]_{\mathbb{R}}$For the real unit interval $[0,1]_{\mathbb{R}}$, the Boolean algebra $B\left([0,1]_{\mathbb{R}}\right)$ R-generated by $[0,1]_{\mathbb{R}}$ is the Boolean algebra of subsets of $[0,1]_{\mathbb{R}}$ of the form

$$
\left(b_{1}, a_{1}\right] \dot{\cup}\left(b_{2}, a_{2}\right] \dot{\cup} \ldots \dot{U}\left(b_{n}, a_{n}\right]
$$

## Example - the Real Unit Interval

The $\phi$ map
$B\left([0,1]_{\mathbb{R}}\right)$
$[0,1]_{\mathbb{R}}$


$(a \ominus b) \oplus(c \ominus d)$

## Example - the Real Unit Interval

## $[0,1]_{\mathbb{R}}$ <br> $B\left([0,1]_{\mathbb{R}}\right)$



## Sharp covers and sharp kernels

## The definitions

Let $E$ be a complete lattice ordered effect algebra, let $x \in E$.
We denote

- $x^{\uparrow}$ for the smallest sharp element above $x$ and
- $x^{\downarrow}$ for the greatest sharp element below $x$, that means,

$$
\begin{aligned}
& x^{\uparrow}=\bigwedge\{y \in S(E): y \geq x\} \\
& x^{\downarrow}=\bigvee\{y \in S(E): y \leq x\} .
\end{aligned}
$$

- $x^{\uparrow}$ is called the sharp cover of $x$.
- $x^{\downarrow}$ is called the sharp kernel of $x$.


## Sharp covers and sharp kernels

## The properties



Theorem (Jenča 2004, submitted to AU)
Let $E$ be a complete lattice ordered effect algebra, let $x \in E$. Pick a block $M$ of $E$ with $x \in M$. Then $\left[x^{\downarrow}, x\right] \cup\left[x, x^{\dagger}\right] \subseteq M$.

## Corollary

Let $E$ be a complete lattice ordered effect algebra, let $x \in E$ be such that $x^{\downarrow}=0$. Then $[0, x]$ is an MV-effect algebra.

## Sharp covers and sharp kernels $\sigma$-complete case

Theorem (Pulmannová 2005)
Let $E$ be a $\sigma$-complete effect algebra, let $x \in E$. Pick a block $M$ of $E$ with $x \in M$. Then $x^{\uparrow}, x^{\downarrow}$ exist and belong to $M$.

Problem
Let $E$ be a $\sigma$-complete lattice ordered effect algebra, let $x \in E$.
Pick a block $M$ of $E$ with $x \in M$. Is it true that
$\left[x^{\downarrow}, x\right] \cup\left[x, x^{\uparrow}\right] \subseteq M$ ?

## Connecting OMLs and Complete Lattice Ordered EAs

 Main resultTheorem (Jenča 2005, to appear in JAustMS)
For every complete lattice ordered effect algebra E, there is a orthomodular lattice $O(E)$ and a surjective morphism of effect algebras $\phi: O(E) \rightarrow E$ such that

- for every block $B$ of $O(E), \phi(B)$ is a block of $E$ and
- for every block $M$ of $E, \phi^{-1}(M)$ is a block of $O(E)$.

Moreover, there is a bounded injective lattice morphism
$\phi^{*}: E \rightarrow O(E)$ such that, for all $x \in E, \phi\left(\phi^{*}(x)\right)=x$.

## Connecting OMLs and Complete Lattice Ordered EAs

 QuotientsFrom now on, $E$ is a complete lattice ordered effect algebra.
Definition
Let $a / b$ denote an ordered pair of elements satisfying $a \geq b$.
We say that $a / b$ is a quotient of $E$.

- The set of all quotients of $E$ is denoted by $Q(E)$.
- We denote $|a / b|=a \ominus b$ (the size of $a / b$ ).


## Connecting OMLs and Complete Lattice Ordered EAs

 The relations $\nearrow$, , and $\sqsubseteq$

- Let us write $c / d \sqsubseteq a / b$ (or $a / b \sqsupseteq c / d$ ) if and only if $b \leq d \leq c \leq a$.

- Let us write $a / b \nearrow c / d$ if and only if
- $a \leq c$, and
- $b \leq d$, and
- $c \ominus a=d \ominus b$, and
- $(c \ominus a) \wedge(a \ominus b)=0$.
- Note that $a / b \nearrow c / d$ implies that $a \ominus b=c \ominus d$.
- $\nearrow$ is transitive. This is not true in a general effect algebra.
- Let us write $\searrow$ for the inverse relation of $\nearrow$.


## Connecting OMLs and Complete Lattice Ordered EAs

An example of $\nearrow$ and $\searrow$ in $[0,1]^{[0,1]}$
all

## Connecting OMLs and Complete Lattice Ordered EAs

 Disjoint quotients- Let us write $\equiv$ for the transitive closure of $\nearrow \cup \searrow$.
- We say that quotients $a / b$ and $c / d$ are disjoint if and only if for all $x / y, z / w$

$$
a / b \sqsupseteq x / y \equiv z / w \sqsubseteq c / d \Longrightarrow x=y
$$

## Connecting OMLs and Complete Lattice Ordered EAs

 An example of disjoint quotients in $[0,1]^{[0,1]}$

Disjoint quotients in $[0,1]^{[0,1]}$.

## Connecting OMLs and Complete Lattice Ordered EAs

 Orthogonal sets of quotients- We say that a finite set of quotients

$$
\mathbf{f}=\left\{a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right\}
$$

is orthogonal if and only if

- f is pairwise disjoint and
- the sum

$$
|\mathbf{f}|:=\left|a_{1} / b_{1}\right| \oplus \cdots \oplus\left|a_{n} / b_{n}\right|
$$

exists in $E$.

- A finite set of quotients $\mathbf{t}$ is a test if and only if
- $\mathbf{t}$ is orthogonal and
- $|t|=1$.


## Connecting OMLs and Complete Lattice Ordered EAs

## Tests and events

Let $X$ be a nonempty set, let $\mathcal{N}, \mathcal{T} \subseteq 2^{X}$. We say that a triple $(X, \mathcal{T}, \mathcal{N})$ is a generalized test space if and only if the following conditions are satisfied.
(GTS1) $X=\bigcup_{\mathbf{t} \in \mathcal{T}} \mathbf{t}$.
(GTS2) $\mathcal{N}$ is an ideal of $2^{X}$, that is, $\mathcal{N}$ is nonempty and for all $\mathbf{o}_{1}, \mathbf{o}_{2} \subseteq X$ we have $\mathbf{o}_{1} \cup \mathbf{o}_{2} \in \mathcal{N}$ if and only if $\mathbf{o}_{1}, \mathbf{o}_{2} \in \mathcal{N}$.
(GTS3) For all $\mathbf{t}_{1} \subseteq \mathbf{t}_{2} \subseteq X$ such that $\mathbf{t}_{1} \in \mathcal{T}$, we have $\mathbf{t}_{2} \in \mathcal{T}$ if and only if $\mathbf{t}_{2} \backslash \mathbf{t}_{1} \in \mathcal{N}$.
(GTS4) For all $\mathbf{t}_{1} \subseteq \mathbf{t}_{2} \subseteq X$ such that $\mathbf{t}_{2} \backslash \mathbf{t}_{1} \in \mathcal{N}$, we have $\mathbf{t}_{1} \in \mathcal{T}$ if and only if $\mathrm{t}_{2} \in \mathcal{T}$.

## Connecting OMLs and Complete Lattice Ordered EAs

 Tests and events- $\mathcal{T}_{E}$ is the set of all tests.
- A finite set of quotients $\mathbf{f}$ is an event if and only if $\mathbf{f} \subseteq \mathbf{t}$ for some test $t$.
- A finite set of quotients $\mathbf{0}$ is a null event if and only if $\mathbf{0}$ contains only quotients of the type $x / x$.
- $\mathcal{N}_{E}$ is the set of all null events.
- $\Omega(E):=\left(Q(E), \mathcal{I}_{E}, \mathcal{N}_{E}\right)$ is then a generalized test space.


## Connecting OMLs and Complete Lattice Ordered EAs

 Standard relations on eventsTwo events $\mathbf{f}, \mathbf{g}$ are

- Orthogonal (in symbols $\mathbf{f} \perp \mathbf{g}$ ) iff
- $\mathbf{f} \cup \mathbf{g}$ is an event, and
- $\mathbf{f} \cap \mathbf{g}$ is a null event.
- Local complements (in symbols $\mathbf{f}$ loc $\mathbf{g}$ ) iff
- $\mathbf{f}$ and $\mathbf{g}$ are orthogonal, and
- $\mathbf{f} \cup \mathbf{g}$ is a test.
- Perspective (in symbols $\mathbf{f} \sim \mathbf{g}$ ) iff they share a local complement.


## Connecting OMLs and Complete Lattice Ordered EAs

 $\Omega(E)$ is algebraicThe generalized test space $\Omega(E)$ is algebraic, that means:

- for all events $\mathbf{f}, \mathbf{g}, \mathbf{h}$

$$
(\mathbf{f} \sim \mathbf{g}) \text { and }(\mathbf{g} \operatorname{loc} \mathbf{h}) \Longrightarrow \mathbf{f} \operatorname{loc} \mathbf{h}
$$

Consequences:

- $\sim$ is an equivalence relation,
- ~ preserves the union of orthogonal events.


## Connecting OMLs and Complete Lattice Ordered EAs

 The construction of $O(E)$$O(E)$ is constructed as follows.

- $O(E)$ is the set of all equivalence classes of events with respect to the $\sim$ relation.
- The unit element of $O(E)$ is the set of all tests.
- The zero element of $O(E)$ is the set of all events that contain only the elements of the type $x / x$ (the null events).
- The partial $\oplus$ operation on $O(E)$ is given by the rule

$$
[\mathbf{f}]_{\sim} \oplus[\mathbf{g}]=[\mathbf{f} \cup \mathbf{g}]_{\sim}
$$

whenever $\mathbf{f}$ and $\mathbf{g}$ are orthogonal events.
$O(E)$ is then a lattice ordered orthoalgebra, that is, an orthomodular lattice.

## Connecting OMLs and Complete Lattice Ordered EAs

 The construction of $\phi$ and $\phi^{*}$- $\phi: O(E) \rightarrow E$ is given by the rule

$$
\phi\left([\mathbf{f}]_{\sim}\right)=|\mathbf{f}| .
$$

- $\phi^{*}: E \rightarrow O(E)$ is given by the rule

$$
\phi^{*}(a)=\{a / 0\} .
$$

## Some other facts

- If $E$ is an MV-effect algebra, then $O(E)$ is isomorphic to the Boolean algebra R-generated by $E$.
- $E$ is an OML if and only if $E \simeq O(E)$.
- An element $a$ of $E$ is sharp iff $\phi^{-1}(a)$ is a singleton.
- $\phi^{-1}(S(E))$ is a sub-orthomodular lattice of $O(E)$.


## Connecting OMLs and Complete Lattice Ordered EAs

 Main resultTheorem (Jenča 2005, to appear in JAustMS)
For every complete lattice ordered effect algebra E, there is a orthomodular lattice $O(E)$ and a surjective morphism of effect algebras $\phi: O(E) \rightarrow E$ such that

- for every block $B$ of $O(E), \phi(B)$ is a block of $E$ and
- for every block $M$ of $E, \phi^{-1}(M)$ is a block of $O(E)$.

Moreover, there is a bounded injective lattice morphism
$\phi^{*}: E \rightarrow O(E)$ such that, for all $x \in E, \phi\left(\phi^{*}(x)\right)=x$.

圊 G．Jenča and Z．Riečanová．
On sharp elements in lattice ordered effect algebras．
BUSEFAL，80：24－29， 1999.
目 G．Jenča．
Finite homogeneous and lattice ordered effect algebras．
Discrete Mathematics，272：197－214， 2003.
國 G．Jenča．
Boolean algebras R－generated by MV－effect algebras．
Fuzzy sets and systems，145：279－285， 2004.
國 G．Jenča．
Sharp and meager elements in orthocomplete homogeneous effect algebras，submitted．

目 G．Jenča．
The block structure of complete lattice ordered effect algebras．
J．Aust．Math．Society，to appear．
http://matika.elf.stuba.sk/KMAT/GejzaJenca

> gejza.jenca@stuba.sk

