The block structure of complete lattice ordered effect algebras

G. Jenča

Department of Mathematics Slovak Technical University

Quantum Structures 2006

Foulis and Bennett 1994; Kôpka and Chovanec 1994; Giuntini and Greuling 1989

An *effect algebra* is a partial algebra $(E; \oplus, 0, 1)$ satisfying the following conditions.

(E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b = b \oplus a$.

- (E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus (b \oplus c)$ are defined and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- (E3) For every $a \in E$ there is a unique $a' \in E$ such that $a \oplus a' = 1$.

(E4) If $a \oplus 1$ exists, then a = 0

Basic Relationships

Let *E* be an effect algebra.

- Cancellativity: $a \oplus b = a \oplus c \Rightarrow b = c$.
- Partial difference: If a ⊕ b = c then we write a = c ⊖ b. ⊖ is well defined and a' = 1 ⊖ a.
- Poset: Write b ≤ c iff ∃a : a ⊕ b = c; (E, ≤) is then a bounded poset.
- ▶ Domain of \oplus : $a \oplus b$ is defined iff $a \le b'$ iff $b \le a'$.

Subalgebras and morphisms

Definition

Let *E* be an effect algebra. A subset $F \subseteq E$ is a subeffect algebra of *E* iff

- ► 1 ∈ *F* and
- ▶ for all $a, b \in F$ such that $a \ominus b$ exists, $a \ominus b \in F$.
- If F is a subeffect algebra of E, then 0 ∈ F and F is closed with respect to ⊕ and the ' operations.

Definition

Let *E*, *F* be effect algebras, let ϕ : *E* \rightarrow *F*. We say that ϕ is a *morphism of effect algebras* iff

- For all a, b ∈ E such that a ⊕ b exists in E, φ(a) ⊕ φ(b) exists in F and φ(a ⊕ b) = φ(a) ⊕ φ(b)

Classes of Effect Algebras

- An effect algebra is an orthomodular lattice iff it is lattice ordered and, for all elements a, a ∧ a' = 0.
- A lattice-ordered effect algebra is an MV-effect algebra iff a ∧ b = 0 implies that a ⊕ b exists.

Sharp Elements

- An element *a* of an effect algebra is called *sharp* iff $a \wedge a' = 0$.
- ► We write S(E) for the set of of all sharp elements of an effect algebra.
- (Jenča and Riečanová 1999) The set of all sharp elements of a lattice ordered effect algebra *E* forms an orthomodular lattice which is a subeffect algebra and a sublattice of *E*.

Blocks of Lattice Ordered Effect algebras

- (Riečanová 1999) Every lattice ordered effect algebra is a union of maximal sub-effect algebras which are MV-effect algebras.
- This result is a generalization of the well-known fact that every orthomodular lattice is a union of its blocks. Hence the following definition is natural.

Definition

Let E be a lattice ordered effect algebra. A *block of* E is a maximal sub-effect algebra of E which is an MV-effect algebra.

 (Riečanová 1999) A subset M of a lattice ordered effect algebra is a block iff M is a maximal subset with respect to the compatibility condition

$$\forall a, b \in M : a \ominus (a \land b) = (a \lor b) \ominus b.$$

Example 1 The diamond

 $a \oplus a = b \oplus b = 1$

• S(E) is a Boolean algebra, but *E* has two blocks.

For any block *B* of *E*, $S(E) \cap B$ is a block of S(E).

Example 2 Very simple

 $a \oplus b = c \oplus c = 1$

- There are two blocks here, a Boolean algebra 2² and a 3-element chain C₃.
- We see that $C_3 \cap S(E) = \{0, 1\}$ is not a block of S(E).

Blocks of *E* and blocks of S(E)Every block of S(E) is the center of some block of *E*

Theorem (Jenča and Riečanová 1999) Let *E* be a lattice ordered effect algebra. *B* be a block of S(E). Then there is a block *M* of *E* such that $M \cap S(E) = B$.

$$a \oplus a = b \oplus b = 1$$

$$a \oplus a = b \oplus b = 1$$

$$a_1 \oplus a_2 = b_1 \oplus b_2 = 1$$

 $a \oplus a = b \oplus b = 1$

 $a_1 \oplus a_2 = b_1 \oplus b_2 = 1$

 $a \oplus a = b \oplus b = 1$ $a_1 \oplus a_2 = b_1 \oplus b_2 = 1$

Theorem (Jenča 2003)

For every finite lattice ordered effect algebra E, there is a finite orthomodular lattice O(E) and a surjective morphism of effect algebras $\phi : O(E) \rightarrow E$ such that

- for every block B of O(E), $\phi(B)$ is a block of E and
- for every block M of E, $\phi^{-1}(M)$ is a block of O(E).

Moreover (unpublished), there is a bounded injective lattice morphism $\phi^* : E \to O(E)$ such that, for all $x \in E$, $\phi(\phi^*(x)) = x$.

Connecting OMLs and finite Lattice Ordered EAs The bounded lattice embedding

Connecting BAs and MV-effect algebras R-generated Boolean algebras

Let *L* be a bounded distributive lattice. Recall, that a *Boolean* algebra *R*-generated by *L* is a Boolean algebra B(L) such that

- L is a 0, 1-sublattice of B(L) and
- L generates B(L), as a Boolean algebra.

These properties determine B(L), up to isomorphism.

Connecting BAs and MV-effect algebras

R-generated Boolean algebras

Theorem

For every MV-effect algebra M there is a surjective morphism of effect algebras $\phi : B(M) \rightarrow M$ and a bounded lattice embedding $\phi^* : M \rightarrow B(M)$ such that the diagram

commutes.

Example - the Real Unit Interval The Boolean algebra R-generated by $[0, 1]_{\mathbb{R}}$

For the real unit interval $[0, 1]_{\mathbb{R}}$, the Boolean algebra $B([0, 1]_{\mathbb{R}})$ R-generated by $[0, 1]_{\mathbb{R}}$ is the Boolean algebra of subsets of $[0, 1]_{\mathbb{R}}$ of the form

 $(b_1, a_1] \dot{\cup} (b_2, a_2] \dot{\cup} \dots \dot{\cup} (b_n, a_n].$

Example - the Real Unit Interval

Example - the Real Unit Interval The ϕ^* map

Sharp covers and sharp kernels The definitions

Let *E* be a complete lattice ordered effect algebra, let $x \in E$. We denote

- x^{\uparrow} for the smallest sharp element above x and
- x^{\downarrow} for the greatest sharp element below x, that means,

$$egin{aligned} &x^{\uparrow} = igwedge \{y \in \mathcal{S}(E): y \geq x\} \ &x^{\downarrow} = igvee \{y \in \mathcal{S}(E): y \leq x\}. \end{aligned}$$

- x^{\uparrow} is called the sharp cover of x.
- x^{\downarrow} is called the *sharp kernel of x*.

Sharp covers and sharp kernels The properties

Theorem (Jenča 2004, submitted to AU)

Let *E* be a complete lattice ordered effect algebra, let $x \in E$. Pick a block *M* of *E* with $x \in M$. Then $[x^{\downarrow}, x] \cup [x, x^{\uparrow}] \subseteq M$.

Corollary

Let *E* be a complete lattice ordered effect algebra, let $x \in E$ be such that $x^{\downarrow} = 0$. Then [0, x] is an MV-effect algebra.

Sharp covers and sharp kernels σ-complete case

Theorem (Pulmannová 2005)

Let *E* be a σ -complete effect algebra, let $x \in E$. Pick a block *M* of *E* with $x \in M$. Then $x^{\uparrow}, x^{\downarrow}$ exist and belong to *M*.

Problem

Let *E* be a σ -complete lattice ordered effect algebra, let $x \in E$. Pick a block *M* of *E* with $x \in M$. Is it true that $[x^{\downarrow}, x] \cup [x, x^{\uparrow}] \subseteq M$?

Connecting OMLs and Complete Lattice Ordered EAs Main result

Theorem (Jenča 2005, to appear in JAustMS)

For every complete lattice ordered effect algebra E, there is a orthomodular lattice O(E) and a surjective morphism of effect algebras $\phi : O(E) \rightarrow E$ such that

• for every block B of O(E), $\phi(B)$ is a block of E and

► for every block *M* of *E*, $\phi^{-1}(M)$ is a block of O(*E*). Moreover, there is a bounded injective lattice morphism

 $\phi^* : E \to O(E)$ such that, for all $x \in E$, $\phi(\phi^*(x)) = x$.

Connecting OMLs and Complete Lattice Ordered EAs Quotients

From now on, *E* is a complete lattice ordered effect algebra.

Definition

Let a/b denote an ordered pair of elements satisfying $a \ge b$. We say that a/b is a quotient of E.

- The set of all quotients of *E* is denoted by Q(E).
- We denote $|a/b| = a \ominus b$ (the size of a/b).

Connecting OMLs and Complete Lattice Ordered EAs The relations \nearrow , \searrow , and \sqsubseteq

Let us write c/d ⊑ a/b (or a/b ⊒ c/d) if and only if b ≤ d ≤ c ≤ a.

▶ Note that $a/b \nearrow c/d$ implies that $a \ominus b = c \ominus d$.

➤ is transitive. This is not true in a general effect algebra.
Let us write ∖ for the inverse relation of ↗.

Connecting OMLs and Complete Lattice Ordered EAs An example of \nearrow and \searrow in [0, 1]^[0,1]

a/b \sqrsc/*d* in [0, 1]^[0,1]

Connecting OMLs and Complete Lattice Ordered EAs Disjoint quotients

- Let us write \equiv for the transitive closure of $\nearrow \cup \searrow$.
- We say that quotients a/b and c/d are disjoint if and only if for all x/y, z/w

$$a/b \sqsupseteq x/y \equiv z/w \sqsubseteq c/d \Longrightarrow x = y.$$

Connecting OMLs and Complete Lattice Ordered EAs An example of disjoint quotients in $[0, 1]^{[0,1]}$

Disjoint quotients in $[0, 1]^{[0,1]}$.

Connecting OMLs and Complete Lattice Ordered EAs Orthogonal sets of quotients

We say that a finite set of quotients

$$\mathbf{f} = \{\mathbf{a}_1/\mathbf{b}_1, \dots, \mathbf{a}_n/\mathbf{b}_n\}$$

is orthogonal if and only if

- f is pairwise disjoint and
- the sum

$$|\mathbf{f}| := |a_1/b_1| \oplus \cdots \oplus |a_n/b_n|$$

exists in E.

- A finite set of quotients t is a test if and only if
 - t is orthogonal and

► |**t**| = 1.

Connecting OMLs and Complete Lattice Ordered EAs Tests and events

Let X be a nonempty set, let $\mathcal{N}, \mathcal{T} \subseteq 2^X$. We say that a triple $(X, \mathcal{T}, \mathcal{N})$ is a *generalized test space* if and only if the following conditions are satisfied.

(GTS1) $X = \bigcup_{\mathbf{t} \in \mathcal{T}} \mathbf{t}.$

- (GTS2) \mathcal{N} is an ideal of 2^X , that is, \mathcal{N} is nonempty and for all $\mathbf{o}_1, \mathbf{o}_2 \subseteq X$ we have $\mathbf{o}_1 \cup \mathbf{o}_2 \in \mathcal{N}$ if and only if $\mathbf{o}_1, \mathbf{o}_2 \in \mathcal{N}$.
- (GTS3) For all $t_1 \subseteq t_2 \subseteq X$ such that $t_1 \in \mathcal{T}$, we have $t_2 \in \mathcal{T}$ if and only if $t_2 \setminus t_1 \in \mathcal{N}$.
- (GTS4) For all $t_1 \subseteq t_2 \subseteq X$ such that $t_2 \setminus t_1 \in \mathcal{N}$, we have $t_1 \in \mathcal{T}$ if and only if $t_2 \in \mathcal{T}$.

Connecting OMLs and Complete Lattice Ordered EAs Tests and events

- T_E is the set of all tests.
- A finite set of quotients f is an event if and only if f ⊆ t for some test t.
- A finite set of quotients o is a null event if and only if o contains only quotients of the type x/x.
- \mathcal{N}_E is the set of all null events.
- $\Omega(E) := (Q(E), T_E, N_E)$ is then a generalized test space.

Connecting OMLs and Complete Lattice Ordered EAs Standard relations on events

Two events f, g are

- Orthogonal (in symbols $\mathbf{f} \perp \mathbf{g}$) iff
 - $\mathbf{f} \cup \mathbf{g}$ is an event, and
 - f∩g is a null event.
- Local complements (in symbols f loc g) iff
 - **f** and **g** are orthogonal, and
 - f ∪ g is a test.
- Perspective (in symbols f ~ g) iff they share a local complement.

Connecting OMLs and Complete Lattice Ordered EAs $\Omega(E)$ is algebraic

The generalized test space $\Omega(E)$ is algebraic, that means:

▶ for all events **f**, **g**, **h**

$$(\mathbf{f} \sim \mathbf{g})$$
 and $(\mathbf{g} \operatorname{loc} \mathbf{h}) \Longrightarrow \mathbf{f} \operatorname{loc} \mathbf{h}$.

Consequences:

- \blacktriangleright ~ is an equivalence relation,
- $\blacktriangleright \sim$ preserves the union of orthogonal events.

Connecting OMLs and Complete Lattice Ordered EAs The construction of O(E)

O(E) is constructed as follows.

- ► O(E) is the set of all equivalence classes of events with respect to the ~ relation.
- The unit element of O(E) is the set of all tests.
- The zero element of O(E) is the set of all events that contain only the elements of the type x/x (the null events).
- The partial \oplus operation on O(E) is given by the rule

$$[\mathbf{f}]_{\sim} \oplus [\mathbf{g}] = [\mathbf{f} \cup \mathbf{g}]_{\sim}$$

whenever f and g are orthogonal events.

O(E) is then a lattice ordered orthoalgebra, that is, an orthomodular lattice.

Connecting OMLs and Complete Lattice Ordered EAs The construction of ϕ and ϕ^*

Some other facts

- If E is an MV-effect algebra, then O(E) is isomorphic to the Boolean algebra R-generated by E.
- *E* is an OML if and only if $E \simeq O(E)$.
- An element *a* of *E* is sharp iff $\phi^{-1}(a)$ is a singleton.
- $\phi^{-1}(S(E))$ is a sub-orthomodular lattice of O(E).

Connecting OMLs and Complete Lattice Ordered EAs Main result

Theorem (Jenča 2005, to appear in JAustMS)

For every complete lattice ordered effect algebra E, there is a orthomodular lattice O(E) and a surjective morphism of effect algebras $\phi : O(E) \rightarrow E$ such that

• for every block B of O(E), $\phi(B)$ is a block of E and

► for every block *M* of *E*, $\phi^{-1}(M)$ is a block of O(*E*). Moreover, there is a bounded injective lattice morphism

 $\phi^* : E \to O(E)$ such that, for all $x \in E$, $\phi(\phi^*(x)) = x$.

G. Jenča and Z. Riečanová. On sharp elements in lattice ordered effect algebras. BUSEFAL. 80:24-29, 1999.

G. Jenča.

Finite homogeneous and lattice ordered effect algebras. Discrete Mathematics, 272:197–214, 2003.

G. Jenča.

Boolean algebras R-generated by MV-effect algebras. *Fuzzy* sets and systems, 145:279–285, 2004.

G. Jenča.

Sharp and meager elements in orthocomplete homogeneous effect algebras, submitted.

G. Jenča.

The block structure of complete lattice ordered effect algebras.

J.Aust. Math. Society, to appear.

http://matika.elf.stuba.sk/KMAT/GejzaJenca

gejza.jenca@stuba.sk