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1. Setup

1.1. Partially ordered abelian groups. Let G be an (additive) abelian group.
We say that G is a partially ordered abelian group iff G is equipped with a partial
order that is compatible with addition, that means, for all a, b, t ∈ G,

a ≥ b =⇒ a+ t ≥ b+ t.
1

For a partially ordered abelian group G, we write

G+ = {a ∈ G : a ≥ 0}.
The elements of G+ are called positive. Obviuosly, G+ is a submonoid of G. More-
over, G+ is conical, that means, if a, b ∈ G+ and a+ b = 0, then a = b = 0.

Given a group G, it is easy to see that there is a one-to one correspondence
between partial orders on G and conical submonoids of G.

1.2. Order units. Let G be a partially ordered abelian group. We say that u ∈ G+

is an order unit iff for every a ∈ G there is n ∈ N such that n.u ≥ a.
A pair (G, u), where G is a partially ordered abelian group and u is an order

unit of G is called a unital group.
Let (G1, u1), (G2, u2) be unital groups. A mapping φ : G1 → G2 is a morphism

of unital groups iff φ is a group homomorphism, x ≥ y implies φ(x) ≥ φ(y) and
φ(u1) = u2.

For a morphism of unital groups, we write φ : (G1, u1)→ (G2, u2).

1.3. Interval effect algebras. One can construct examples of effect algebras from
an arbitrary partially ordered abelian group (G,≤) in the following way: Choose
any positive u ∈ G; then, for 0 ≤ a, b ≤ u, define a ⊕ b if and only if a + b ≤ u
and put a ⊕ b = a + b. With such partial operation ⊕, the interval [0, u] becomes
an effect algebra ([0, u],⊕, 0, u). Effect algebras which arise from partially ordered
abelian groups in this way are called interval effect algebras, see [?].

1.4. Group valued measures and ambient groups. Let E be an effect algebra
and let (G2, u2) be a unital group. A morphism of effect algebras from E to the
interval effect algebra [0, u2]G2 is called a group-valued measure.

〈prop:ambient〉Proposition 1. 2 [?] Let E be an interval effect algebra. There exists a unital
group (G1, u1) such that E = [0, u1]G1 , E generated G1 and for every unital group
(G2, u2) and every group valued measure φ : E → [0, u2]G2 , phi extends to a unique

1Give some easy examples, and S(H)
2Look it up in the original paper.
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morphism of unital groups φ̂ : (G1, u1) → (G2, u2). The unital group (G1, u1) is
unique, up to isomorphism.

The unital group (G1, u1) from Proposition 1 is called the ambient group of E,
denoted by G(E).

1.5. Möbius inversion theorem. We say that a partially ordered set (P,≤) is
locally finite if and only if every closed interval

[x, y]P := {z ∈ P : x ≤ z ≤ y}

is a finite set.
Let G be an abelian group and let (P,≤) be a locally finite partially ordered set.

Define I(P ) to be the set of all pairs (x, y) ∈ P × P such that (x ≤ y).
There exists a unique function µ : I(P )→ G such that, for all (x, y) ∈ I(P ),

(1) eq:mobius

∑
x≤z≤y

µ(x, z) = δx,y,

where δx,y is the Kronecker delta. We say the µ is the Möbius map of the poset
P .

To see that the Möbius map exists and is unique, observe that the equation 1
allows for an inductive definition of µ.

Indeed, let P be a locally finite poset. For (x, y) ∈ I(P ), let us write h(x, y) for
the height of the interval [x, y]P . If h(x, y) = 0, then x = y and µ(x, y) = δx,y = 1.
Let (x, y) ∈ I(P ), h(x, y) = n > 0 and suppose that we already know the values
µ(x, z) for all (x, z) ∈ I(P ) with h(x, z) < n.

Since h(x, y) > 0, x 6= y. Therefore, by equation 1,∑
x≤z≤y

µ(x, z) = δx,y = 0.

This implies that

µ(x, y) = −
∑

x≤z<y

µ(x, z),

and the values of µ(x, z) are already known.

Example 1. Let S be a set, write Fin(S) for the set of all finite subsets of S. For
the poset (Fin(S),⊆), we have µ(X,Z) = (−1)|X|+|Z|.

Theorem 1 (Möbius inversion formula). Let f : I(P ) → A, define f≤(x, y) :=∑
x≤z≤y f(x, z). Then

f(x, y) =
∑

x≤z≤y

µ(x, z)f≤(z, y).

We say that f(x, y) is the Möbius inversion of f≤. 3

3Look it up. What is the MI of what?



COMPATIBILITY MAPPINGS IN INTERVAL EFFECT ALGEBRAS 3

1.6. Compatibility maps. Let E be an interval effect algebra. Let S ⊆ E. Let
us write Fin(S) for the set of all finite subsets of S. Obviously, (Fin(S),⊆) is a
locally finite poset.

For every mapping α : Fin(S)→ G(E), we define a mapping Dα : I(Fin(S))→
G. For (X,A) ∈ I(Fin(S)), the value Dα(X,A) ∈ G is given by the rule

Dα(X,A) :=
∑

X⊆Z⊆A

(−1)|X|+|Z|α(Z).

Note that there is an obvious connection to Möbius inversions: define α̂ :
I(Fin(S))→ G by

α̂(X,A) = α(X).

Then Dα is the Möbius inversion of α̂. By the Möbius inversion formula we see
that

α(X) = α̂(X,A) =
∑

X≤Z≤A

Dα(X,Z),

for any A ⊇ X. In particular, A := X yields α(X) = Dα(X,X).
〈lemma:formal〉Lemma 1. Let E be an interval effect algebra. Let S be a subset of E, let α :

Fin(S)→ G(E). For all c ∈ S \A,

Dα(X,A) = Dα(X,A ∪ {c}) +Dα(X ∪ {c}, A ∪ {c}).

Proof. 4 Let us rewrite

Dα(X,A ∪ {c}) =
∑

X⊆Z⊆A∪{c}

(−1)|X|+|Z|α(Z).

For any Z in the above sum, either c ∈ Z or c /∈ Z. If c ∈ Z, then X ∪ {c} ⊆ Z ⊆
A ∪ {c}. If c /∈ Z, then X ⊆ Z ⊆ A. Consequently,

Dα(X,A ∪ {c}) =
∑

X⊆Z⊆A

(−1)|X|+|Z|α(Z) +
∑

X∪{c}⊆Z⊆A∪{c}

(−1)|X|+|Z|α(Z) =

=Dα(X,A) +
∑

X∪{c}⊆Z⊆A∪{c}

(−1)|X|+|Z|α(Z)

It remains to observe that∑
X∪{c}⊆Z⊆A∪{c}

(−1)|X|+|Z|α(Z) =

=−
∑

X∪{c}⊆Z⊆A∪{c}

(−1)|X∪{c}|+|Z|α(Z) = Dα(X ∪ {c}, A ∪ {c}).

�

?〈def:cm〉?
Definition 1. Let E be an interval effect algebra, let S ⊆ E.

We say that a mapping α : Fin(S)→ E is a compatibility mapping for S if and
only if the following conditions are satisfied.

(A1) α(∅) = 1,
(A2) for all c ∈ S, α({c}) = c,
(A3) for all (X,A) in I(Fin(S)), 0 ≤ Dα(X,A) ≤ u.

4The sums look awkward.
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1.7. Properties of compatibility maps. To shorten our formulations, let us
introduce some running notation:

• E is an interval effect algebra,
• S is a subset of E,
• α : Fin(S)→ E is a compatibility map.

〈prop:base〉Proposition 2. For all A ∈ Fin(S) and c ∈ S \ A, Dα(X,A ∪ {c}) ⊥ Dα(X ∪
{c}, A ∪ {c}) and

Dα(X,A) = Dα(X,A ∪ {c})⊕Dα(X ∪ {c}, A ∪ {c}).

Proof. By Lemma 1. �

〈coro:antitone〉Corollary 1. α is an antitone map from (Fin(S),⊆) to (E,≤).

Proof. Let us prove that for any c ∈ S \ X, α(X ∪ {c}) ≤ α(X). Put X = A in
Proposition 2 to obtain

α(X) = Dα(X,X) = Dα(X,X∪{c})⊕Dα(X∪{c}, X∪{c}) ≥ Dα(X∪{c}, X∪{c}) = α(X∪{c}).
The rest of the proof is a trivial induction. �

〈coro:lbound〉Corollary 2. α(X) is a lower bound of X.

Proof. Let c ∈ X. By Corollary 1, {c} ⊆ X implies that

c = α({c}) ≥ α(X).

�

Corollary 3. If 0 ∈ X, then α(X) = 0.

Proof. Trivial, by Corollary 2. �

〈coro:zero〉Corollary 4. If 1 /∈ X, then Dα(X,X ∪ {1}) = 0.

Proof. (By induction with respect to |X|.) If X = ∅, then

Dα(X,X ∪ {1}) = Dα(∅, {1}) = α(∅)− α({1}) = 1− 1 = 0.

Suppose that the Corollary is true for some X and let c /∈ X, c 6= 1. We want
to prove that Dα(X ∪{c}, X ∪{c}∪ {1}) = 0. Putting A = X ∪{1} in Proposition
2 yields

Dα(X,X ∪ {1}) = Dα(X,X ∪ {c} ∪ {1})⊕Dα(X ∪ {c}, X ∪ {c} ∪ {1}).
By the induction hypothesis, Dα(X,X ∪ {1}) = 0, and since

Dα(X,X ∪ {1}) ≥ Dα(X ∪ {c}, X ∪ {c} ∪ {1}),
we may conclude that Dα(X ∪ {c}, X ∪ {c} ∪ {1}) = 0. �

Corollary 5. α(X) = α(X ∪ {1})

Proof. If 1 ∈ X, there is nothing to prove.
Suppose that 1 6∈ X. Putting A = X and c = 1 in Proposition 2 yields

Dα(X,X) = Dα(X,X ∪ {1})⊕Dα(X ∪ {1}, X ∪ {1}).
By Corollary 4, Dα(X,X ∪ {1}) = 0, hence

α(X) = Dα(X,X) = Dα(X ∪ {1}, X ∪ {1}) = α(X ∪ {1}).
�
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1.8. Examples of compatibility maps.
〈prop:Dwedge〉Proposition 3. Let M be an MV-effect algebra. For the mapping

∧
: Fin(M)→

M ,
D∧(X,A) =

∧
X 	 ((

∧
X) ∧ (

∨
A/X)).

Proof. The proof goes by induction with respect to |A \X|.
If |A \X| = 0, then A = X and

D∧(X,A) = D(X,X) =
∧
X.

For the right-hand side,∧
X 	 ((

∧
X) ∧ (

∨
A/X)) =

∧
X 	 ((

∧
X) ∧ 0) =

∧
X.

Let n ∈ N, suppose that the Proposition is true for all pairs (X,A) with |A\X| ≤
n. Let X,A1 ∈ Fin(M) be such that X ⊆ A1 and |A1 \X| = n+1. Pick c ∈ A1 \X
and put A := A1 \ {c}. Then c /∈ A and A1 = A ∪ {c}.

By Lemma 1,

D∧(X,A) = D∧(X,A ∪ {c}) +D∧(X ∪ {c}, A ∪ {c}),
hence

D∧(X,A ∪ {c}) = D∧(X,A)−D∧(X ∪ {c}, A ∪ {c}).
To abbreviate, let us write x :=

∧
X, a :=

∨
X \ A. Note that

∨
(A ∪ {c}) \ (X ∪

{c}) = a and that
∨

(A ∪ {c}) \X = a ∨ c. We need to prove that

D∧(X,A ∪ {c}) = x	 x ∧ (a ∨ c).
By the induction hypothesis, we may write

D(X,A) =x	 x ∧ a
D∧(X ∪ {c}, A ∪ {c}) =(x ∧ c)	 (x ∧ c ∧ a),

therefore
D∧(X,A ∪ {c}) = (x	 x ∧ a)− ((x ∧ c)	 (x ∧ c ∧ a)).

Thus, it remains to prove that

x	 x ∧ (a ∨ c) = (x	 x ∧ a)− ((x ∧ c)	 (x ∧ c ∧ a)),

that means,

((x ∧ c)	 (x ∧ c ∧ a)) + x	 x ∧ (a ∨ c) = x	 x ∧ a.
Since M is an MV-algebra, we may compute

((x ∧ c)	 (x ∧ c ∧ a)) = ((x ∧ c)	 ((x ∧ c) ∧ (x ∧ a))) = ((x ∧ c) ∨ (x ∧ a))	 (x ∧ a) =

= x ∧ (c ∨ a)	 (x ∧ a) = x ∧ (a ∨ c)	 (x ∧ a),

hence

((x ∧ c)	 (x ∧ c ∧ a)) + x	 x ∧ (a ∨ c) =

(x ∧ (a ∨ c)	 (x ∧ a)) + (x	 x ∧ (a ∨ c)) = x	 x ∧ a.
�

Corollary 6. Let G be an abelian l-group. The mapping
∧

: Fin(M) → M is a
compatibility map.
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Proof. Clearly, the conditions (A1) and (A2) are satisfied.
Moreover, for any (X,A) ∈ Fin(M), u ≥

∧
X ≥ ((

∧
X)∧ (

∨
A/X)). Therefore,

by Proposition 3, u ≥ D(X,A) ≥ 0 and we see that (A3) is satisfied. �

〈prop:Dprod〉Proposition 4. Let E be an interval effect algebra. Assume that G(E) can be
equipped with a product so that (G(E),+, ., 0, 1,≤) is a partially ordered commuta-
tive ring.

Let Π : Fin(E)→ E be given by

Π({x1, . . . , xn}) = x1. . . . .xn.

For every (X,A) ∈ I(Fin(E)) and c ∈ E \A,

DΠ(X ∪ {c}, A ∪ {c}) = c.DΠ(X,A).

Proof. Let us compute

DΠ(X ∪ {c}, A ∪ {c}) =
∑

X∪{c}⊆Z⊆A∪{c}

(−1)|X∪{c}|+|Z|Π(Z) =

∑
X⊆Y⊆A

(−1)|X∪{c}|+|Y ∪{c}|Π(Y ∪ {c}) =
∑

X⊆Y⊆A

(−1)|X|+|Y |Π(Y ∪ {c}) =

c.
∑

X⊆Y⊆A

(−1)|X|+|Y |Π(Y ) = c.D(X,A).

�

Corollary 7. Π is a compatibility map.

Proof. The proof goes by induction with respect to |A \X|.
For A = X, DΠ(X,A) = DΠ(X,X) = Π(X) and 0 ≤ Π(X) ≤ 1.
Let n ∈ N. Suppose that, for all A,X ∈ Fin(E) such that |A \ X| = n,

0 ≤ DΠ(X,A) ≤ 1. Let A1, X ∈ Fin(E) be such that |A1 \ X| = n + 1. Pick
c ∈ A1 \X and write A = A1 \ {c}. We see that c /∈ A and that A1 = A ∪ {c}. We
shall prove that 0 ≤ DΠ(X,A ∪ {c}) ≤ 1.

By Lemma 1 and Proposition 4,

DΠ(X,A ∪ {c}) = DΠ(X,A)−DΠ(X ∪ {c}, A ∪ {c}) =

DΠ(X,A)− c.DΠ(X,A) = (1− c).DΠ(X,A).

By the induction hypothesis, 0 ≤ DΠ(X,A) ≤ 1, hence

0 ≤ (1− c).DΠ(X,A) ≤ 1.
5 �

Proposition 5. Let E1, E2 be interval effect algebras. Let φ : E1 → E2 be a
momorphism of effect algebras. If S1 ⊆ E1 is such that there is a compatibility
mapping α1 of S1, then φ(S1) admits a compatibility mapping.

Proof. The mapping φ is a G(E2) valued measure on E1. Therefore, there is a
morphism of unigroups φ̂ : (G(E1), 1)→ (G(E2), 1)) extending φ.

For every a ∈ φ̂(S1), fix p(a) ∈ S1 such that φ̂(p(a)) = a. Define α2 :
Fin(φ̂(S1))→ E2 as follows:

α2({x1, . . . , xn}) = φ̂(α1({p(x1), . . . , p(xn)})),

5Do we need 1 to be a ring unit? Maybe a general order unit u would do.
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or, in other words, for X ∈ Fin(S2), α2(X) = φ̂(α1(p(X))). Then α2 is a compat-
ibility map for φ̂(S1).

Indeed, condition (A1) and (A2) are trivially satisfied. For the proof of (A3) we
may compute

Dα2(X,A) =
∑

X⊆Z⊆A

(−1)|X|+|Z|α2(Z) =
∑

X⊆Z⊆A

(−1)|X|+|Z|φ̂(α1(p(Z))) =

φ̂(
∑

X⊆Z⊆A

(−1)|X|+|Z|α1(p(Z))) = φ̂(
∑

p(X)⊆Y⊆p(A)

(−1)|p(X)|+|Y |α1(Y )).

Since α1 is a compatibility map, (−1)|p(X)|+|Y |α1(Y ) ∈ E1. Therefore,

φ̂(
∑

p(X)⊆Y⊆p(A)

(−1)|p(X)|+|Y |α1(Y )) ∈ E2.

�

Corollary 8. Let (G,≤) be a partially ordered abelian group with an order unit u,
let M be an MV-algebra. Let φ : M → [0, u]G be a morphism of effect algebras.
Then φ(M) admits a compatibility mapping.

Proof. According to Mundici’s theorem, the mapping �

〈lemma:second〉Lemma 2. Let C,A,X ∈ Fin(S) be such that X ⊆ A and C ∩ A = ∅. Then
(Dα(X ∪ Y,A ∪ C))Y⊆C is an orthogonal family and⊕

Y⊆C

Dα(X ∪ Y,A ∪ C) = Dα(X,A).

Proof. The proof goes by induction with respect to |C|.
For C = ∅, the lemma is trivially true. Let C be such that |C| = n and let

c ∈ S, c 6∈ A ∪ C. Let us consider the family

(Dα(X ∪ Z,A ∪ C ∪ {c}))Z⊆C∪{c}.
For each Z ⊆ C ∪ {c}, either c ∈ Z or c 6∈ Z, so either Z = Y ∪ {c} or Z = Y , for
some Y ⊆ C. Therefore, we can write

(Dα(X ∪ Z,A ∪ C ∪ {c}))Z⊆C∪{c} =

(Dα(X ∪ Y,A ∪ C ∪ {c}), Dα(X ∪ Y ∪ {c}, A ∪ C ∪ {c}))Y⊆C .
By Proposition 2,

Dα(X ∪ Y,A ∪ C ∪ {c})⊕Dα(X ∪ Y ∪ {c}, A ∪ C ∪ {c}) = Dα(X ∪ Y,A ∪ C).

It only remains to apply the induction hypothesis to finish the proof. �

Corollary 9. 6 For every A ∈ Fin(S), (Dα(X,A))X⊆A is a decomposition of
〈coro:decomposition〉 unit.

Proof. By Lemma 2,⊕
X⊆A

(Dα(∅ ∪X, ∅ ∪A)) = Dα(∅, ∅) = α(∅) = 1

�

6This follows directly from the Möbius inversion theorem; how about decomposition lemma
itself?
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〈coro:alphaAobservable〉
Corollary 10. For every A ∈ Fin(S), the mapping ωA : 2(2A) → E given by

ωA(X) =
⊕
X∈X

Dα(X,A)

is a simple observable.

Proof. The atoms of 2(2A) are of the form {X}, where X ⊆ A. By Corollary 9,
(ωA({X}) : X ⊆ A) is a decomposition of unit; the remainder of the proof is
trivial. �

For A,B ∈ Fin(S) with A ⊆ B, let us define mappings gAB : 2(2A) → 2(2B)

gAB(X) = {X ∪ C0 : X ∈ X and C0 ⊆ (B \A)}

and let us write G for the collection of all such mappings.
It is an easy exercise to prove that every gAB ∈ G is an injective homomorphism

of Boolean algebras and that ((2(2A) : A ∈ Fin(S)),G) is a direct family of Boolean
algebras.

Let us prove that the mappings gAB behave well with respect to the observables
ωA and ωB .

〈lemma:d1commutes〉Lemma 3. Let A,B ∈ Fin(S) with A ⊆ B. The diagram

2(2A) E

2(2B)

ωA

gA
B ωB

commutes.

Proof. For all X ∈ 2(2A),

ωB(gAB(X)) = ωB({X ∪ C0 : X ∈ X and C0 ⊆ (B \A)}) =

=
⊕

(Dα(X ∪ C0, B) : X ∈ X and C0 ⊆ (B \A)) =

=
⊕
X∈X

( ⊕
C0⊆(B\A)

Dα(X ∪ C0, B)
)

Put Y := C0, C := B \A; by Lemma 2,⊕
C0⊆(B\A)

Dα(X ∪ C0, B) = Dα(X,A).

Therefore,

ωB(gAB(X)) =
⊕
X∈X

Dα(X,A) = ωA(X)

and the diagram commutes. �

〈coro:simplerange〉Corollary 11. For every B ∈ Fin(S), B is a subset of the range of ωB.

Proof. We need to prove that every a ∈ B is an element of the range of ωB . For
B = ∅, this is trivial.
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Suppose that B is nonempty and let a ∈ B. Let A = {a}. and let X =
gAB({{a}}). By Lemma 3,

ωB(X) = ωB(gAB({{a}})) = ωA({{a}}),
and we see that

ωA({{a}}) = ω{a}({{a}}) = Dα({a}, {a}) = α({a}) = a.

�
?〈thm:obsfromcsm〉?

Theorem 2. Let E be an effect algebra. If S admits a compatibility mapping, then
S can be embedded into the range of an observable.

Proof. Suppose that S admits a compatibility mapping. Let us construct FB(S) as
the direct limit of the direct family (22A

: A ∈ Fin(S)), equipped with morphisms
of the type gAB . After that, we shall define an observable ω : FB(S)→ E.

Consider the set
ΓS =

⋃
A∈Fin(S)

{(X, A) : X ⊆ 2A}

and define on it a binary relation ≡ by (X, A) ≡ (Y, B) if and only if gAA∪B(X) =
gBA∪B(Y), that means

{X ∪CA : X ∈ X and CA ⊆ A∪B \A} = {Y ∪CB : Y ∈ Y and CB ⊆ A∪B \B}.
Then FB(S) = ΓS/ ≡ and the operations on FB(S) are defined by

[(X, A)]≡ ∨ [(Y, B)]≡ = [(gAA∪B(X) ∪ gBA∪B(Y), A ∪B)]≡

and similarly for the other operations. Then FB(S) is a direct limit of Booleat
algebras, hence a Boolean algebra.

Let ωS : FB(S) → E be a mapping given by the rule ωS([(X, A)]≡) = ωA(X).
We shall prove that ωS is an observable.

Let us prove ωS is well-defined. Suppose that (X, A) ≡ (Y, B), that means,
gAA∪B(X) = gBA∪B(Y). By Lemma 3,

ωA(X) = ωA∪B(gAA∪B(X))

and
ωB(Y) = ωA∪B(gBA∪B(Y)),

hence ωS is a well-defined mapping.
Let us prove that ωS is an observable. The bounds of the Boolean algebra FB(S)

are [(∅, A)]≡ and [(2A, A)]≡, where A ∈ Fin(S). Obviously, by Corollary 10,

ωS([(∅, A)]≡) = ωA(∅) = 0

and
ωS([(2A, A)]≡) = ωA(2A) = 1.

Let [(X, A)]≡ and [(Y, B)≡] be disjoint elements of FB(S), that is, gAA∪B(X) ∩
gBA∪B(Y) = ∅. Then

ωS([(X, A)]≡ ∨ [(Y, B)]≡) = ωS([gAA∪B(X) ∪ gBA∪B(Y), A ∪B]≡) =

= ωA∪B(gAA∪B(X) ∪ gBA∪B(Y)).

Since ωA∪B is an observable,

ωA∪B(gAA∪B(X) ∪ gBA∪B(Y)) = ωA∪B(gAA∪B(X))⊕ ωA∪B(gBA∪B(Y)).
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It remains to observe that

ωA∪B(gAA∪B(X)) = ωS([(X, A)]≡)

and that
ωA∪B(gBA∪B(Y)) = ωS([(Y, B)]≡).

Let us prove that the range of ωS includes S. Let a ∈ S. By Corollary 11, the
range of ω{a} includes a and, by an obvious direct limit argument, the range of
ω{a} is a subset of the range of ωS . �


