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1. Introduction

The goal of this paper is to investigate the decay properties of the initial-value problem

(1.1)



u′ + uux + uxxx + a3vxxx + a1vvx + a2(uv)x + k(u− [u]) = 0,

b1v
′ + rvx + vvx + vxxx + b2a3uxxx + b2a2uux

+b2a1(uv)x + k(v − [v]) = 0,

u(0, x) = φ(x),

v(0, x) = ψ(x)

with periodic boundary conditions. In (1.1), r, a1, a2, a3, b1, b2, k are given real constants with
b1, b2, k > 0, u(t, x), v(t, x) are real-valued functions of the time and space variables t ≥ 0 and
0 ≤ x ≤ 1, the subscript x and the prime indicate the partial differentiation with respect to x
and t, respectively, and [f ] denotes the mean value of f defined by

[f ] :=

∫ 1

0
f(x) dx.

When k = 0, system was proposed by Gear and Grimshaw [8] as a model to describe strong
interactions of two long internal gravity waves in a stratified fluid, where the two waves are
assumed to correspond to different modes of the linearized equations of motion. It has the
structure of a pair of KdV equations with both linear and nonlinear coupling terms and has
been object of intensive research in recent years. In what concerns the stabilization problems,
most of the works have been focused on a bounded interval with a localized internal damping
(see, for instance, [14] and the references therein). In particular, we also refer to [1] for an
extensive discussion on the physical relevance of the system and to [3, 4, 5, 6, 7] for the results
used in this paper.

We can (formally) check that the total energy

E =
1

2

∫ 1

0
b2u

2 + b1v
2 dx

associated with the model satisfies the inequality

E′ = −k
∫ 1

0
b2(u− [u])2 + (v − [v])2 dx ≤ 0

in (0,∞), so that the energy in nonincreasing. Therefore, the following basic questions arise:
are the solutions asymptotically stable for t sufficiently large? And if yes, is it possible to find
a rate of decay? The aim of this paper is to answer these questions.

More precisely, we prove that for any fixed integer s ≥ 3, the solutions are exponentially
stable in the Sobolev spaces

Hs
p(0, 1) := {u ∈ Hs(0, 1) : ∂nxu(0) = ∂nxu(1), n = 0, . . . , s}

Date: Version 2013-06-18-a.
2010 Mathematics Subject Classification. Primary: 35Q53, Secondary: 37K10, 93B05, 93D15.
Key words and phrases. KdV equation. conservation laws, stabilization, decay rate.



28 CAPISTRANO-FILHO, KOMORNIK, AND PAZOTO

with periodic boundary conditions. This extends an earlier theorem of Dávila in [6] for s ≤ 2.
Before stating the stabilization result mentioned above, we first need to ensure the well posed-

ness of the system. This was addressed by Dávila in [3] (see also [4]) under the following
conditions on the coefficients:

(1.2)

a23b2 < 1 and r = 0
b2a1a3 − b1a3 + b1a2 − a2 = 0
b1a1 − a1 − b1a2a3 + a3 = 0
b1a

2
2 + b2a

2
1 − b1a1 − a2 = 0.

Indeed, under conditions (1.2), Dávila and Chaves [7] derived some conservation laws for the
solutions of (1.1). Combined with an approach introduced in [2, 17], these conservation laws
allow them to establish the global well-posedness in Hs

p(0, 1), for any s ≥ 0. Moreover, the
authors also give a simpler derivation of the conservation laws discovered by Gear and Grimshaw,
and Bona et al [1]. We also observe that these conservation properties were obtained employing
the techniques developed in [13] for the single KdV equation; see also [12].

The well-posedness result reads as follows:

Theorem 1.1. Assume that condition (1.2) holds. If φ, ψ ∈ Hs
p(0, 1) for some integer s ≥ 3,

then the system (1.1) has a unique solution satisfying

u, v ∈ C([0,∞);Hs
p(0, 1)) ∩ C1([0,∞);Hs−3

p (0, 1)).

Moreover, the map (φ, ψ) 7→ (u, v) is continuous from
(
Hs

p(0, 1)
)2

into(
C([0,∞);Hs

p(0, 1)) ∩ C1([0,∞);Hs−3
p (0, 1))

)2
.

For k = 0, the analogous theorem on the whole real line −∞ < x < ∞ was proved Bona et
al. [1], for all s ≥ 1.

With the global well-posedness result in hand, we can focus on the stabilization problem. For
simplicity of notation we consider only the case

(1.3) b1 = b2 = 1.

Then the conditions (1.2) take the simplified form

(1.4) r = 0, a21 + a22 = a1 + a2, |a3| < 1, and (a1 − 1)a3 = (a2 − 1)a3 = 0.

Hence either a3 = 0 and a21 + a22 = a1 + a2, or 0 < |a3| < 1 and a1 = a2 = 1.
We prove the following theorem:

Theorem 1.2. Assume (1.3) and (1.4). If φ, ψ ∈ Hs
p(0, 1) for some integer s ≥ 3, then the

solution of (1.1) satisfies the estimate

‖u(t)− [u(t)]‖Hs
p(0,1)

+ ‖v(t)− [v(t)]‖Hs
p(0,1)

= o
(
e−k

′t
)
, t→∞

for each k′ < k.

An analogous theorem was proved in [10] for the usual KdV equation by using the infinite
family of conservation laws for this equation. Such conservations lead to the construction of a
suitable Lyapunov function that gives the exponential decay of the solutions. Here, we follow
the same approach making use of the results established by Dávila and Chavez [7]. They proved
that under the assumptions (1.2) system (1.1) also has an infinite family of conservation laws,
and they conjectured the above theorem for this case. At this point we observe that some
computations are simplified if we change u, v, φ and ψ to u − [u], v − [v], φ − [φ] and ψ − [ψ].
Then, the new unknown functions u and v satisfy the same system (1.1) with ku and kv instead
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of k(u− [u]) and k(v − [v]). Hence we consider the solutions of the simplified system

(1.5)


u′ + uux + uxxx + a3vxxx + a1vvx + a2(uv)x + ku = 0,

v′ + vvx + vxxx + a3uxxx + a2uux + a1(uv)x + kv = 0,

u(0, x) = φ(x),

v(0, x) = ψ(x)

with periodic boundary conditions, corresponding to initial data φ, ψ with zero mean values.
In order to obtain the result, we prove a number of identities and estimates for the solutions

of (1.1). In view of Theorem 1.1 it suffices to establish these estimates for smooth solutions, i.e.,
to solutions corresponding to C∞ initial data φ, ψ with periodic boundary conditions. For such
solutions all formal manipulations in the sequel will be justified.
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Instituto de Matemática, Universidade Federal do Rio de Janeiro, C.P. 68530 - Cidade Univer-
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