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Abstract. We deal with an optimal control problem governed by a nonlinear hyperbolic initial-
boundary value problem describing the perpendicular vibrations of a beam lying on an elastic
foundation. A variable thickness of a beam plays the role of a control variable. The original
equation for the deflection is regularized in order to derive necessary optimality conditions.
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1. Introduction

Shape design optimization problems belong to the frequently solved problems with many
engineering applications. We deal here with an optimal design problem for an elastic beam
vibrating against an elastic foundation. A variable thickness of a beam plays the role of a
control variable. The similar problem for the stationary elastic Bernoulli beam is investigated
in [8]. We have considered the dynamic state problem in [4]. The equation for the deflections
has there the form

e(x)utt + d(e3(x)uxx)xx + q(x)u+ = f(t, x) in (0, T ]× (0, L).

In order to derive not only the existence of optimal variable thickness e but also the necessary
optimality conditions we regularize the function u 7→ u+ by

u 7→ gδ(u), gδ(u) =


0 for u ≤ 0
2
δu

2 − 1
δ2
u3 for 0 < u < δ

u for u ≥ δ.

Solving the state problem we apply the Galerkin method in the same way as in [1], where
the rigid obstacle acting against a beam is considered. The compactness method will be used in
solving the minimum problem for a cost functional. We apply the approach from [2] in deriving
the optimality conditions.

2. Solving of the state problem

2.1. Setting of the state problem. We consider a beam of the length L > 0. Its variable
thickness is expressed by a positive function x 7→ e(x), x ∈ [0, L], the positive constants ρ, b, E
are the density of the material, width of the beam and the Young modulus, µ ∈ (0, 0.5) is a Pois-
son ratio and a positive function x 7→ q(x), x ∈ [0, L] represents the stiffness of the foundation.
The beam is clamped on the both ends. Let F : (0, T ]× (0, L) 7→ R be a perpendicular load per
a unit length acting on the beam. Then the vertical displacement u : (0, T ]× (0, L) 7→ R is due
to [5] a solution of the following hyperbolic equation

ρbe(x)utt +
bE

12(1− µ2)
(e3(x)uxx)xx + q0(x)gδ(u) = F (t, x) in (0, T ]× (0, L).
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Let u0, v0 : (0, L) 7→ R be the initial displacement and velocity and d = E
12ρ(1−µ2)

, q = q0
ρb , f = F

ρb

be the new material characteristics. Then the vertical displacement u : (0, T ]×(0, L) 7→ R solves
the hyperbolic initial-boundary value problem

e(x)utt + d(e3(x)uxx)xx + q(x)gδ(u) = f(t, x) in (0, T ]× (0, L),(1)

u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = 0, t ∈ (0, T ],(2)

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ (0, L).(3)

We introduce the Hilbert spaces

H ≡ L2(0, L), H1(0, L) = {y ∈ H : y′ ∈ H}, H2(0, L) = {y ∈ H1(0, L) : y′′ ∈ H},

V ≡ H̊2(0, L) = {y ∈ H2(0, L) : y(0) = y(L) = y′(0) = y′(L) = 0}

with the inner products and the norms

(y, z) =

∫ L

0
y(x)z(x) dx, |y|0 = (y, y)1/2, y, z ∈ H,

(y, z)1 =

∫ L

0
[y(x)z(x) + y′(x)z′(x)] dx, ‖y‖1 = (y, y)

1/2
1 , y, z ∈ H1(0, L),

(y, z)2 =

∫ L

0
[y(x)z(x) + y′(x)z′(x) + y′′(x)z′′(x)] dx, ‖y‖2 = (y, y)

1/2
2 , y, z ∈ H2(0, L),

((y, z)) =

∫ L

0
y′′(x)z′′(x) dx, ‖y‖ = ((y, y))1/2, y, z ∈ V.

We set I = (0, T ), Q = I × (0, L). For be a Banach space X we denote by Lp(I;X) the Banach
space of all functions y : I 7→ X such that ‖y(·)‖X ∈ Lp(0, T ), p ≥ 1, by L∞(I;X) the space of
essentially bounded functions with values in X, by C(Ī;X) the space of continuous functions
y : Ī 7→ X, Ī = [0, T ]. For k ∈ N we denote by Ck(Ī;X) the spaces of k-times continuously
differentiable functions defined on Ī with values in X. If X is a Hilbert space we set

Hk(I;X) = {v ∈ Ck−1(Ī;X) :
dkv

dtk
∈ L2(I;X)}

the Hilbert spaces with the inner products

(u, v)Hk(I,X) =

∫
I
[(u, v)X +

k∑
j=1

(uj , vj)X ] dt, k ∈ N.

Further we set V = L∞(I;V ) and denote by ẇ, ẅ and
...
w the first, the second and the third

time derivative of a function w : I → X. We assume

f ∈ H1(I;H); u0 ∈ V ∩H4(0, L), u0 < 0; v0 ∈ V, q ∈ C[0, L], q > 0; e ∈W,
W = {e ∈ H2(0, L), 0 < emin ≤ e(x) ≤ emax ∀x ∈ [0, L]}

and formulate a weak solution of the problem (1)-(3).

Definition 2.1. A function u ∈ V is a weak solution of the problem (1)-(3) if ü ∈ L2(Q) and∫
Q

[
eüy + de3(x)uxxyxx + q(x)gδ(u)y

]
dx dt =

∫
Q
f(t, x)y dx dt ∀ y ∈ L2(I;V ),(4)

u(0) = u0, u̇(0) = v0.(5)
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2.2. Existence and uniqueness of the state problem. We verify the existence and unique-
ness of a weak solution by the Galerkin method.

Theorem 2.2. There exists a unique solution u ∈ V of the problem (4,5) such that
u̇ ∈ V ∩ C(Ī;H2−ε(0, L)), ü ∈ L∞(I;H) ∀ε > 0; fulfil the estimate

‖ü‖L∞(I,H) + ‖u̇‖L∞(I,V ) ≤ C(d, emin, emax, u0, v0, f, q).(6)

Proof. Let {wi ∈ V ∩H4(0, L); i ∈ N} be a basis of V . We construct the Galerkin approxi-
mation um of a solution in a form

um(t) =
m∑
i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N,

∫ L

0

[
e(x)üm(t)wi + de3(x)umxxwixx + q(x)gδ(um)wi

]
dx =

∫ L

0
f(t)wi dx, i = 1, ...,m,(7)

um(0) = u0m, u̇m(0) = v0m, u0m → u0 in H4(0, L) and v0m → v0 in V.(8)

After applying the theorem on a local existence and uniqueness of a solution {α1, ..., αm}
of the 2nd-order system of ordinary differential equations we obtain the solution um which is
defined on a certain interval Im = (0, tm), tm < T . It can be extended to the whole interval
[0, T ] as a consequence of a priori estimates that we prove next.

We multiply the equation (7) with α̇i(t) , sum up with respect to i and integrate. The
estimate

‖u̇m‖2C(Īm,H) + ‖um‖2C(Īm,V ) ≤ C1(d, emin, emax, u0, v0, f, q).(9)

then follows. As the right-hand side of this estimate does not depend on tm a solution can be
prolonged to the whole interval I with the a priori estimate

(10) ‖u̇m‖2C(Ī,H) + ‖um‖2C(Ī,V ) ≤ C1(d, emin, emax, u0, v0, f, q).

In order to achieve better a priori estimates we differentiate (7) with respect to t and insert üm
for wi. We arrive at∫ L

0

[
e(x)

...
um(t)üm(t) + de3(x)u̇mxxümxx

]
dx =

∫ L

0

[
ḟ(t)− q(x)g′δ(um)u̇m

]
üm(t) dx

which yields after integrating with respect to the time variable∫ L

0

[
e(x)ü2

m(t) + de3(x)u̇2
mxx(t)

]
dx =∫ L

0

[
e(x)ü2

m(0) + de3(x)v2
0mxx

]
dx+ 2

∫ t

0

∫ L

0

[
ḟ(s)− q(x)g′δ(um)u̇m

]
üm(s) dx ds.

(11)

We apply (7) for t = 0, set wi = üm(0) and obtain

(12)

∫ L

0
e(x)ü2

m(0) dx =

∫ L

0

[
−d(e3(x)u0mxx)xx + f(0)

]
üm(0) dx.

We remark that the assumption u0 < 0 implies u0m(0) < 0 and hence gδ(u0m(0)) = 0 for
sufficiently large m. After combining the estimate (10) and the expressions (11,12) we obtain
the estimates of acceleration term and velocity term

(13) ‖üm‖2C(Ī,H) + ‖u̇m‖2C(Ī,V ) ≤ C2(d, emin, emax, u0, v0, f, q), m ≥ m0.

We proceed with the convergence of the Galerkin approximation. Applying the estimates
(10), (13) the Aubin-Lions compact imbedding theorem [6], Sobolev imbedding theorems and
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the interpolation theorems in Sobolev spaces [3] we obtain for a subsequence of {um} (denoted
again by {um}) a function u ∈ V with u̇ ∈ L∞(I, V ), ü ∈ L∞(I,H) and the convergences

üm ⇀ ü in L∞(I,H),

u̇m ⇀∗ u̇ in L∞(I;V ),

u̇m → u̇ in C(Ī;H2−ε(0, L)) ∀ ε > 0,

u̇m → u̇ in C(Ī;C1[0, L]),

um ⇀∗ u in L∞(I;V ),

um → u in C(Ī;H2−ε(0, L)) ∀ ε > 0,

um → u in C(Ī;C1[0, L]).

(14)

Let µ ∈ N, yµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. The convergence process (14) implies∫
Q

[
eüyµ + de3(x)uxxyµxx + q(x)gδ(u)yµ

]
dx dt =

∫
Q
fyµ dx dt.

Functions {yµ} form a dense subset of the set L2(I;V ) and hence a function u fulfils the identity
(4).

The initial conditions (5) follow due to (8) and the proof of the existence of a solution is
complete.

The proof of the uniqueness can be performed in a standard way using the Gronwall lemma.

Remark 2.3. It is possible after applying the approach from [7], 11.2.3 to verify the uniqueness
in the larger class of solutions with ü ∈ L∞(I;V ∗).

3. Optimal control problem

3.1. The existence of an optimal thickness. We consider a cost functional J : L2(I;V )×
H2(0, L) 7→ R fulfilling the assumption

(15) un ⇀ u in L2(I;V ), en ⇀ e in H2(0, L)⇒ J(u; e) ≤ lim inf
n→∞

J(un; en)

and

Ead = {e ∈ H2(0, L) : 0 < emin ≤ e(x) ≤ emax ∀x ∈ [0, L], ‖e‖H2(0,L) ≤ ê}
the set of admissible thicknesses. We formulate

Optimal control problem P : To find a control e∗ ∈ Ead such that

(16) J(u(e∗), e∗) ≤ J(u(e), e) ∀e ∈ Ead,

where u(e) is a (unique) weak solution of the Problem (1)-(3).

Theorem 3.1. There exists a solution of the Optimal control problem P.

Proof. We use the lower semicontinuity properties of the functional J and the compactness of
the admissible set Ead of thicknesses in the space C[0, L]. Let {en} ⊂ Ead be a minimizing
sequence for (16) i.e.

(17) lim
n→∞

J(u(en); en) = inf
e∈Ead

J(u(e), e).

There exists a subsequence of {en} (denoted again by {en}) and an element e∗ such that

(18) en ⇀ e∗ in H2(0, L), en → e∗ in C[0, L].

The a priori estimates (6) imply the existence of a function u∗ ∈ V ≡ L∞(I;V ) such that
ut ∈ L∞(I;H) and

(19) u(en) ⇀∗ u∗ in V, ut(en) ⇀ u̇∗t in L∞(I;H).
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Functions un ≡ u(en) solve the initial value state problem (4-5) for e ≡ en. The convergences
(18-19) then implies that u∗ solves the problem (4,5) with e ≡ e∗ and ü∗ ∈ L∞(I;V ∗). We have
u∗ ≡ u(e∗) due to Theorem 2.2 and Remark 2.3. and hence

u(en) ⇀∗ u(e∗) in V, u(en) ⇀ u(e∗) in L2(I;V ).

Properties (15) and (17) then imply

J(u(e∗), e∗) = min
e∈Ead

J(u(e), e)

and the proof is complete.

3.2. Necessary optimality conditions. In order to derive necessary optimality conditions we
assume for simplicity the cost functional in a form

J(u, e) = ‖Cu− zd‖H +N‖e‖22, zd ∈ H, N ≥ 0,

where H is any Hilbert space, C ∈ L(L2(I;V ),H).
The optimal control problem can then be expressed in a form

(20) j(e∗) = min
e∈Ead

j(e), j(e) = J(u(e), e).

Let us introduce the Banach space

W = {v ∈ V : v̇ ∈ V, v̈ ∈ L∞(I;H)}.
In the same way as in [2] the following theorem about Fréchet differentiability of the mapping
e 7→ u(e) can be verified.

Theorem 3.2. The mapping u(·) : Ead →W is Fréchet differentiable and its derivative
z ≡ u′(e)h fulfils for all e ∈ Ead the operator equation

(21) A(e)z = −B(e)h, h ∈ H2(0, L),

with the operators A(e)z, B(e)h :W → L2(I;V ∗) defined by

〈〈A(e)z, y〉〉 =

∫
Q

[
ez̈y + de3zxxyxx + q(x)g′δ(u(e))zy

]
dx dt(22)

〈〈B(e)h, y〉〉 =

∫
Q
h[ü(e)y + 3de2uxx(e)yxx] dx dt, y ∈ L2(I;V ).(23)

The functional j in (20) is Fréchet differentiable and its derivative in e∗ ∈ Ead has the form

(24) 〈j′(e∗), h〉 = 2〈Cu(e∗)− zd, C[u′(e∗)h]〉+ 2N(e∗, h)2, h ∈ H2(0, L).

The optimal thickness e∗ ∈ Ead fulfils the variational inequality

(25) 〈j′(e∗), e− e∗〉 ≥ 0 ∀e ∈ Ead
which can be expressed in a form

(26)

∫
I
〈C∗Λ(Cu(e∗)− zd), u′(e∗)h〉V ∗,V dt+N(e∗, e− e∗) ≥ 0 ∀e ∈ Ead

with the adjoint operator C∗ ∈ L(H∗, L2(I;V ∗)) and the canonical isomorphism Λ : H → H∗.
Applying Theorem 3.2 we obtain the necessary optimality conditions in a form of a system

with an adjoint state p:

Theorem 3.3. The optimal thickness e∗, the corresponding state (deflection) u∗ ≡ u(e∗) and
the adjoint state p∗ ≡ p(e∗) are solutions of the initial value problem∫

Q

[
e∗u∗tty + d(e∗)3(x)u∗txxyxx + q(x)gδ(u

∗)y
]
dx dt =

∫
Q
f(t, x)y dx dt ∀ y ∈ L2(I;V ),

u∗(0) = u0, u
∗
t (0) = v0,

A(e∗)p∗ = C∗Λ(Cu∗ − zd); p∗(T ) = p∗t (T ) = 0,

N(e∗, e− e∗)2 − 〈〈B(e∗)(e− e∗), p∗〉〉 ∀e ∈ Ead.
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Remark 3.4. It is possible after using the variational inequality (25) with (24) to obtain for
sufficiently large N the uniqueness of the Optimal control e∗.
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