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Abstract. This talk is based on a joint paper with L. Kérchy. We characterize those sequences
{hn}∞n=1 of bounded analytic functions, which have the property that an absolutely continuous
contraction T is stable (that is the powers Tn converge to zero) exactly when the operators
hn(T ) converge to zero in the strong operator topology. Our result is extended to polynomially
bounded operators too.
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1. Introduction

Let H be a complex, separable Hilbert space, and let L(H) stand for the algebra of bounded
linear operators acting on H. An operator T ∈ L(H) is a contraction if ||T || ≤ 1. It is well-
known that any contraction can be uniquely decomposed into the orthogonal sum T = T1 ⊕ T2
of a completely nonunitary (c.n.u.) contraction T1 and a unitary operator T2. A contraction is
called absolutely continuous if the scalar-valued spectral measure of its unitary part is absolutely
continuous with respect to Lebesgue measure. The Sz.-Nagy–Foias functional calculus φT for
an a.c. contraction T is a contractive, weak-* continuous, unital algebra homomorphism from
the Hardy space H∞ into L(H), mapping the identity function χ into T .

The contraction T ∈ L(H) is called stable, in notation T ∈ C0·, if Tn converges to the
zero operator in strong operator topology (SOT). Our aim in this note is to characterize those
sequences {hn}∞n=1 ⊂ H∞, which can serve to test stability of an a.c. contraction, namely,
satisfying the condition that hn(T )→ 0 (SOT) exactly when T ∈ C0·. This question was posed
by M. Dritschel.

2. Main result

Definition 1. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a test sequence of
stability for a.c. contractions if for every a.c. contraction T the condition Tn → 0 (SOT) holds
exactly when hn(T )→ 0 (SOT).

Theorem 2. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a test sequence of
stability for a.c. contractions if and only if

(i) limn→∞ hn(z) = 0 for all z ∈ D,
(ii) sup {||hn||∞ : n ∈ N} <∞,
(iii) lim supn→∞ ||χαhn||2 > 0 for every Borel set α ⊂ T of positive measure.

(χα is the characteristic function of α.)

Besides this theorem some connected results and extensions to polynomially bounded opera-
tors were communicated in [4].
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