CHARACTERIZATION OF STABILITY OF CONTRACTIONS

A. SZALAI

ABSTRACT. This talk is based on a joint paper with L. Kérchy. We characterize those sequences $\{h_n\}_{n=1}^{\infty}$ of bounded analytic functions, which have the property that an absolutely continuous contraction T is stable (that is the powers T^n converge to zero) exactly when the operators $h_n(T)$ converge to zero in the strong operator topology. Our result is extended to polynomially bounded operators too.

1. INTRODUCTION

Let \mathcal{H} be a complex, separable Hilbert space, and let $\mathcal{L}(\mathcal{H})$ stand for the algebra of bounded linear operators acting on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is a contraction if $||T|| \leq 1$. It is wellknown that any contraction can be uniquely decomposed into the orthogonal sum $T = T_1 \oplus T_2$ of a completely nonunitary (c.n.u.) contraction T_1 and a unitary operator T_2 . A contraction is called absolutely continuous if the scalar-valued spectral measure of its unitary part is absolutely continuous with respect to Lebesgue measure. The Sz.-Nagy–Foias functional calculus ϕ_T for an a.c. contraction T is a contractive, weak-* continuous, unital algebra homomorphism from the Hardy space H^{∞} into $\mathcal{L}(\mathcal{H})$, mapping the identity function χ into T.

The contraction $T \in \mathcal{L}(\mathcal{H})$ is called stable, in notation $T \in C_{0.}$, if T^n converges to the zero operator in strong operator topology (SOT). Our aim in this note is to characterize those sequences $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}$, which can serve to test stability of an a.c. contraction, namely, satisfying the condition that $h_n(T) \to 0$ (SOT) exactly when $T \in C_{0.}$. This question was posed by M. Dritschel.

2. Main result

Definition 1. A sequence of bounded analytic functions $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}$ is a test sequence of stability for a.c. contractions if for every a.c. contraction T the condition $T^n \to 0$ (SOT) holds exactly when $h_n(T) \to 0$ (SOT).

Theorem 2. A sequence of bounded analytic functions $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}$ is a test sequence of stability for a.c. contractions if and only if

- (i) $\lim_{n\to\infty} h_n(z) = 0$ for all $z \in \mathbb{D}$,
- (*ii*) sup { $||h_n||_{\infty} : n \in \mathbb{N}$ } < ∞ ,
- (iii) $\limsup_{n\to\infty} ||\chi_{\alpha}h_n||_2 > 0$ for every Borel set $\alpha \subset \mathbb{T}$ of positive measure. (χ_{α} is the characteristic function of α .)

Besides this theorem some connected results and extensions to polynomially bounded operators were communicated in [4].

References

- C. Foias, A remark on the universal model for contractions of G. C. Rota, Com. Acad. R. P. Române 13 (1963), 349-352.
- [2] K. Hoffman, Banach Spaces of Analytic Functions, Dover Publications, Inc., New York, 1988.
- [3] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J., 38 (1989), 173188.
- [4] L. Krchy, A. Szalai, Characterization of stability of contractions, Acta Sci. Math. (Szeged), 79 (2013), 325-332.
- [5] W. Mlak, Algebraic polynomially bounded operators, Ann. Polon. Math. 29 (1974), 133–139.
- [6] B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, Universitext (Second ed.), Springer, 2010.

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED, ARADI VÉRTANÚK TERE 1., 6720 SZEGED, HUNGARY *E-mail address*: szalaiap@math.u-szeged.hu

Partially supported by "TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system convergence program". The project was subsidized by the European Union and co-financed by the European Social Fund."