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Remark
The norms of the backward sequence of any contraction are
increasing.
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Theorem
Let T be a contraction. The following conditions are equivalent:

@ for any bounded backward sequence {x,},en of T, the sequence
of norms {||x,||} nen is constant,

@ nonunitary part of T is of class Cg.

A\
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Proposition

Az(H) = {x € H| there is a bounded backward sequence {x,}, such
that x = x},

Moreover, if x, € A2(H) then there exists a backward sequence
{xn}n begins with xo such that ||x,| — inf{||z]| : xo = A2z}




For a contraction T the sequence {T"T*"},cy is strongly
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Proposition

Az(H) = {x € H| there is a bounded backward sequence {x,}, such
that x = x},

Moreover, if x, € A2(H) then there exists a backward sequence
{xn}n begins with xo such that ||x,|| — inf{||z| : xo = A2z}

The proof follows the papers of E. Durszt and Z. Sebestyen.
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Criterion

Outline of the criterion’s proof

@ By the above proposition if Az(z) = x for z € A2(H) then
Izl = [IxI

@ A is a projection
@By [5] T=U®S® G, where G is a Co cnu contraction, S is a
backward unilateral shift and U is unitary.

@ For S we can find a backward sequence {x,}nen such that ||x,||
is not constant. So T =U® G.
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@ Putnam (1975): Hyponormal operators
@ Duggal (1994): p-hyponormal and k-paranormal operators

@ (p, k)-quasihyponormal and kx-paranormal operators
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Definition
An operator T € B('H) is said to be hyponormal iff T*T — TT* >0

T is hyponormal if and only if || T*x|| < || Tx|| for each x € H \

Letus S: >3 (X]_,XQ,X3, ) = (O, )\]_X]_7 )\2X27 )\3X3, ) €?bea
weight shift.
S is hyponormal if and only if {|\s|}nen is increasing.
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Remark

The (p, k)-quasihyponormal operator is (p’, k')-quasihyponormal,
where 0 < p' < p<1and k <K.
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Each nilpotent is (p, k)-quasihyponormal for some k.
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Proof.
By [4] T satisfies the inequality

x| < T2 7]

for all unit vectors in H.
So, if we choose a bounded backward sequence, then we obtain
X
Ixall? = 1 T el = [l 2l TH | P <
%o+l

Xnt-k —1 Xntk

< Xl P T T
-+ [+

= | Tk T il = (x| |




I?

1% [1% < flxa—a [l |xn
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1% [1% < flxa—a [l |xn

So
Ixall - X0l
[Xa—1ll =[xl
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since {||x,||} nen increases and converges




Proof.

1%all? < [1Xn—1 1| Xn+1 ]
So
ol el
= el T [l

since {||xa||} nen increases and converges
Thus [|x,|| = const
By our criterion the nonunitary part of T is Cq contraction. [J
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Classes richer than the class of hyponormal
operators

T € B(H) is said to be kx-paranormal if
7|l < [Tl |11~

for each x € H.

| A

Example

LetusS: /1?3 (X1,X2,X3, ) — (O, A1X1, AaXp, A3X3, ) € ? be a
weight shift.

Then S is kx-paranormal if and only if [X\,|* < [Api1dnt2 -+ Anikl
for all n € N
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Classes richer than the class of hyponormal

operators

kx-paranormal operators have the Co nonunitary part. \

Proposition
Each kx-paranormal operator is a (k + 1)-paranormal operator.

Let T € B(H) be a kx-paranormal operator.

T2 = (T T, 50 < T Tl < [IT(Tx) Tl x|

Thus || Tx||“F < | T*(Tx) 1l x]“. O
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Thank you for your attention!



