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Introduction

Let A be a bounded Hilbert space operator.

Can we deduce the normality of A from properties of the
function [0, 00) 3 t +— |le®Af||? (f — arbitrary vector)

Not in general; we have to consider also

[0,00) = t+— |7 f]|.

This leads to a Friedland’s result (1982).
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Ais normal if and only if

Dariusz Cichon Criteria for normality



Friedland’s Theorem

Ais normal if and only if
the functions
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are convex for all f.
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Friedland’s Theorem

Ais normal if and only if
the functions

tAfH tA*fH

[0,00) >t — log e and [0,00) >t~ log|le

are convex for all f.

The proof is long and involved,

but the implication “=" is easy basing on the specitral
theorem.
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Unbounded A

If we want unbounded operator A,
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Unbounded A

If we want unbounded operator A,
then the natural replacement for e is the Cy-semigroup

{S(H} =0
having A as its infinitesimal generator.

Then {S(t)*}4=0 is the proper replacement for e?A".
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A family {S(t)}+~o of bounded operators is called a
Co-semigroup if

() S(t1 + fg) = S(H)S(tg),

@ S(0) is the identity operator,

@ lim;_,o4 S(t)f = f for all £.
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A family {S(t)}+~o of bounded operators is called a
Co-semigroup if

() S(t1 + fg) = S(H)S(tg),

@ 5(0) is the identity operator,

@ lim;_,o4 S(t)f = f for all £.
Ais called the infinitesimal generator of {S(t)}+o if

Af = lim %(S(t)f— f)

t—0+

for all f, for which the limit exists (this is the domain of A).
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Generalized Friedland’s theorem

A — the infinitesimal generator of a Cy-semigroup {S(t)}¢o-
Then
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Generalized Friedland’s theorem

Theorem

A — the infinitesimal generator of a Cy-semigroup {S(t)}¢o-
Then

() Ais normal,
(i) for every h € H the functions t — log || S(t)h|| and
t — log ||S(t)*h| are convex on [0, ),

(iii) for every h € H there exists ey, € (0, c0) such that the

functions t — log || S(t)h|| and t — log || S(t)*h|| are convex
on [0,ep).
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Generalized Friedland’s theorem

Theorem

A — the infinitesimal generator of a Cy-semigroup {S(t)}¢o-
Then

() Ais normal,

(i) for every h € H the functions t — log || S(t)h|| and
t — log ||S(t)*h| are convex on [0, ),
(iii) for every h € H there exists ey, € (0, c0) such that the

functions t — log || S(t)h|| and t — log || S(t)*h|| are convex
on [0,ep).

Moreover, if (i) holds, then N'(S(t)) = {0}, t > 0.
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The proof of (i)=(ii). Take h € H, a € (0,1), t;, £ € [0, c0).
Then

IS(ati + (1 —a))h|? = /(C X2 - [elT=BA2 11 (d)
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The proof of (i)=(ii). Take h € H, a € (0,1), t;, £ € [0, c0).
Then

IS(ati + (1 —a))h|? = /(C X2 - [elT=BA2 11 (d)

< (LB nan)” ([ (B )

Dariusz Cichon Criteria for normality



The proof of (i)=(ii). Take h € H, a € (0,1), t;, £ € [0, c0).
Then

IS(ati + (1 —a))h|? = /(C X2 - [elT=BA2 11 (d)

< (LB nan)” ([ (B )

= || S(t)hlP (| S(t) bl ).
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Generalized Friedland’s theorem

Theorem

A — the infinitesimal generator of a Cy-semigroup {S(t)}¢o-
Then

(i) Ais normal,

(i) for every h € H the functions t — log || S(t)h|| and
t — log ||S(t)*h| are convex on [0, ),
(iii) for every h € H there exists ey, € (0, c0) such that the

functions t — log || S(t)h|| and t — log || S(t)*h|| are convex
on [0,ep).

Moreover, if (i) holds, then N'(S(t)) = {0}, t > 0.
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Proof of (iii)=(ii) is based on a lemma stating that a
differentiable function on [a, b), which is convex on the left from
every point, is convex of class C'.
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Proof of (iii)=(ii) is based on a lemma stating that a
differentiable function on [a, b), which is convex on the left from
every point, is convex of class C'.

(ii)=>(iii). Trivial.

(il)=(i). By convexity we have

—

log [|S(t)hll < 5 (log [[S(0)h] +log [S(21)All),  heH,

which means that
IS(tAIZ < |h]| - |S(H2hll, heH,

thus S(t) is paranormal. So is S(t)*. Moreover, kernels S(t)
and S(t)* are equal (since both equal to {0}).

Dariusz Cichon Criteria for normality



Proof of (iii)=(ii) is based on a lemma stating that a
differentiable function on [a, b), which is convex on the left from
every point, is convex of class C'.

(ii)=>(iii). Trivial.

(il)=(i). By convexity we have

—

log [|S(t)hll < 5 (log [[S(0)h] +log [S(21)All),  heH,

which means that
IS(tAIZ < |h]| - |S(H2hll, heH,

thus S(t) is paranormal. So is S(t)*. Moreover, kernels S(t)
and S(t)* are equal (since both equal to {0}). By the Ando
theorem we get the normality of S(t), hence normality of A.
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Proposition

The infinitesimal generator of a compact Cy-semigroup
{S(t) }te[0,00) is normal if and only if the function
t — log || S(t)h]| is convex on [0, c0) for every h € H.
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Proposition

The infinitesimal generator of a compact Cy-semigroup
{S(t) }te[0,00) is normal if and only if the function
t — log || S(t)h]| is convex on [0, c0) for every h € H.

Proof. Convexity = paranormality of S(t) = normality of S(t)
(by Istratescu, Saité & Yoshino, 1966) = normality of A.
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Normality via moment sequences

A bounded operator A is normal if and only if N'(A) = N (A*)
and

[]
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and for some integers j, k > 1
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[]

Dariusz Cichon Criteria for normality



Normality via moment sequences

Proposition

A bounded operator A is normal if and only if N'(A) = N (A*)
and for some integers j, k > 1

(equivalently: for all integers j, k > 1)

the sequences {||A"h||?/}>2, and {||A*"h||?k}> , are
Hamburger moment sequences for every h € H.

Proof.

D |
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Normality via moment sequences

Proposition

A bounded operator A is normal if and only if N'(A) = N (A*)
and for some integers j, k > 1

(equivalently: for all integers j, k > 1)

the sequences {||A"h||?/}>2, and {||A*"h||?k}> , are
Hamburger moment sequences for every h € H.

Proof.
(=) Mainly by the spectral theorem.
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Normality via moment sequences

Proposition

A bounded operator A is normal if and only if N'(A) = N (A*)
and for some integers j, k > 1

(equivalently: for all integers j, k > 1)

the sequences {||A"h||?}o, and {||A*”h||2"} °, are
Hamburger moment sequences for every h € H.

Proof
(=) Mainly by the spectral theorem.
(<)
(1ARIEIY2 = ( fi trn(at))
< Jg Bun(d) [ Pun(dt) = |A2H|F| A7,
so Ais paranormal.
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Normality via moment sequences

Proposition

A bounded operator A is normal if and only if N'(A) = N (A*)
and for some integers j, k > 1

(equivalently: for all integers j, k > 1)

the sequences {||A"h||?}o, and {||A*”h||2"} °, are
Hamburger moment sequences for every h € H.

Proof
(=) Mainly by the spectral theorem.
(<)
(1ARIEIY2 = ( fi trn(at))
< Jg Crun(dt) [ un(dt) = || A2h|Z||A||,
so A is paranormal. The same for A*.
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Normality via moment sequences

Proposition

A bounded operator A is normal if and only if N'(A) = N (A*)
and for some integers j, k > 1

(equivalently: for all integers j, k > 1)

the sequences {||A"h||?}o, and {||A*”h||2"} °, are
Hamburger moment sequences for every h € H.

Proof
(=) Mainly by the spectral theorem.
(<)
(1ARIEIY2 = ( fi trn(at))
< J Brn(dt) fg Pun(dt) = [|A2A[Z | A]Z,
so Ais paranormal. The same for A*. By the Ando theorem A is
normal. Ol
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Proposition

A compact operator A is normal if and only if for some integer
J = 1 (equivalently: for all integers j > 1) the sequence
{||A"h||@}o., is @ Hamburger moment sequence for every
heH.
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Proposition

A compact operator A is normal if and only if for some integer
[ > 1 (equivalently: for all integers j > 1) the sequence

{||A"h||%}22  is a Hamburger moment sequence for every
he™H.

Open question

| \

Fix integer j > 2 and assume that {||A"h||2}° , is a Hamburger

moment sequence for every h € H. Does it follow that A is
subnormal?
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And Now for Something Completely Different

#6443, Fia,Bel.DianfB=A.=.avBe?2

Dem.
F.x5426.DFna=1t2.8=t'y.D:avpBel.=.x+y.
[#51-231] = tznt'y=A.
[%1312] =.anfB=A )

F.(1).%11'11:35.D
Fu(ge,y).a=t‘z.B=1y.davBe2.=.anB=A (2)
F.(2).%11'54.%52'1.DF. Prop

From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1=2.
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