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Method of Reliable Solution in Homogenization
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Abstract. Method of reliable solution solves the problem of equations with uncertain data. It
looks for solutions and data of the equation giving maximum of a functional describing dangerous
situations – the worst scenario method. The contribution formulates the reliable solution problem
in homogenization of elliptic equations and surveys the results obtained by Luděk Nechvátal and
the author.
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Introduction

Partial differential equations are used for modeling of real problems in engineering practice.
The model contains material constants in constitute relations which are not known exactly, since
they are obtained by measurements and are loaded by errors. Thus only intervals, where values
of these constants can occur, are known. The equations are said to have “uncertain” input data.
The uncertain coefficients cause uncertain solutions.

Deterministic approach to this problem called “Worst Scenario Method” was proposed by
I. Babuška and further developed by I. Hlaváček and J. Chleboun, see [3]. It is based on the
following idea: A set U ad of admissible data a is defined, it is often described by a Cartesian
product of the intervals and the corresponding set of problems (P[a]), a ∈ U ad is considered.
According to the character of the real engineering problem a special cost functional Φ(a) is cho-
sen. It measures dangerous situations like peaks of deformation or stress, extreme temperature
or extreme temperature slope. Then the maximum of Φ on U ad is looked for, i. e. we look for
the worst case that can happen on the admissible data. The method is called “Reliable Solution
Method” or “Worst Scenario Method”. In general, the maximum of the problem need not exist.
In linear problems the maximum lies on the boundary of U ad, in the case of nonlinear equation
it need not be true.

Homogenization is a mathematical method for modeling materials with periodic structure,
especially composite materials. To solve these problems numerically is impossible since fine
structure of the material requires even finer triangulation which leads to enormous number of
equations. Thus for computation reasons the material with fine structure is replaced by an
equivalent homogeneous material; in mathematical settings the equation with highly oscillating
coefficients is approximated by a constant coefficient equation giving almost the same solutions.

Approach proposed by I. Babuška is based on construction of a sequence of materials with
finer and finer structure; in mathematical setting a sequence of equations having coefficients
with diminishing period is studied. The method, see e. g. [1], enables to compute the so-called
homogenized coefficients of the so-called homogenized equation from knowledge of the coeffi-
cient in the period, i. e. from the parameters of the components of the composite and their
space distribution. The main results of the homogenization theory is to find formulae for the
homogenized coefficients and to prove convergence of the corresponding solutions.

The aim of the contribution is to describe the method of reliable solution in homogenization
and to outline the results obtained by L. Nechvátal and the author. The case of linear elliptic
equation is formulated, generalization to nonlinear case is only sketched.

1This research is supported by Brno University of Technology, Specific Research project no. FSI-S-11-3.
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1 Preliminaries

A sequence E = {εn}∞n=1 of small positive numbers εn tending to zero is called the scale. In
homogenization instead of a subscript n ∈ Z sequences are denoted with a superscript εn from
the scale E, but the n in εn is omitted.

Let Y be a basic cell, usually it is the unit cube in RN , i. e. Y = 〈0, 1)N . A collection of
shifted cells Yk = Y + k = {y + k | y ∈ Y } with k = (k1, . . . , kn), ki ∈ Z is a pavement of
the space RN , i. e. the cells Yk are disjoint and their union over k ∈ ZN covers the whole RN .
A function a(y) defined on RN is called to be Y -periodic, if a(y + k) = a(y) holds for each
y ∈ RN and each k ∈ ZN . The ε-scaled cell Y will be denoted by Y ε and k-shifted ε-scaled cell
by Y ε

k , i. e. Y ε
k = {ε(y + k) | y ∈ Y }.

Let Ω be a bounded domain in RN with Lipschitz boundary Γ. Let a be a Y -periodic
function. Then relation

aε(x) = a
(x
ε

)
≡ a

(x1

ε
, . . . ,

xN

ε

)
, x ∈ Ω (1)

defines a sequence {aε | ε ∈ E} of Y ε-periodic functions on Ω with diminishing period ε. We shall
use standard notation of function spaces: Lp(Ω) is the Lebesgue space of functions integrable in
the p-th power (bounded measurable functions in case of p =∞), W 1,2(Ω) is the Sobolev space
of functions with square integrable first derivatives and W 1,2

0 (Ω) its subspace with zero traces
on Γ. Space of Y -periodic functions will be denoted by the subscript per, e. g. W 1,p

per (Y ).

2 Linear elliptic problem

For sake of simplicity we start with a linear differential equation with coefficient matrix a

−div (a∇ua) ≡ −
N∑

i=1,j

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f in Ω

completed with the homogeneous Dirichlet boundary condition

ua = 0 on ∂Ω.

The solution is taken in the so-called weak sense, i. e.

Problem (P[a]) Find a function ua ∈W 1,2
0 (Ω) satisfying

aa(ua, v) ≡
∫

Ω

N∑
i,j=1

aij(x)
∂ua

∂xj

∂v

∂xi
dx =

∫
Ω
fv dx. for all v ∈W 1,2

0 (Ω).

Throughout the paper we shall assume that f ∈ L2(Ω) and the coefficients aij are bounded
measurable functions forming a symmetric positive definitive matrix, i. e.

aij ∈ L∞(Ω), aji = aij , α
N∑

i=1

ξ2
i ≤

N∑
i,j=1

aij(x)ξjξi ≤M
N∑

i=1

ξ2
i ∀ ξ ∈ RN . (2)

The class of all such coefficient matrix functions a satisfying (2) with constants 0 < α ≤M will
be denoted by E(α,M).

Following the well known Lax-Milgram lemma Problem (P[a]) for a ∈ E(α,M) admits unique
solution ua and it, in addition, satisfies estimate

‖ua‖1,2 ≤
1
α
‖f‖2 . (3)
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3 Formulation of the homogenization problem and its solution

For any ε ∈ E and a Y -periodic matrix function a : Ω → RN×N satisfying (2) by (1) we
obtain a ε-periodic functions aε

ij and then the corresponding problem with ε-periodic coefficients:

Problem (P[aε]) Find a function uaε ∈W 1,2
0 (Ω) satisfying

aaε(uaε , v) ≡
∫

Ω

N∑
i,j=1

aij

(x
ε

) ∂uaε

∂xj

∂v

∂xi
dx =

∫
Ω
f v dx for all v ∈W 1,2

0 (Ω). (4)

Following the previous section the problem (P[aε]) admits unique solution uaε . Taking a
scale E of diminishing parameters ε we obtain a sequence {uaε} of corresponding solutions. Due
to (3) the sequence is bounded in W 1,2(Ω).

The well known result, see e. g. [1], says that the sequence of solutions uaε converge in
W 1,2(Ω) weakly to a function uba which is a solution to the same type problem but with the
so-called homogenized coefficients – matrix of constant function ba:

Problem (P[ba]) Find a function uba ∈W 1,2
0 (Ω) satisfying

aba(uba , v) ≡
∫

Ω

N∑
i,j=1

baij
∂uba

∂xj

∂v

∂xi
dx =

∫
Ω
fv dx. for all v ∈W 1,2

0 (Ω).

The homogenized coefficients ba can be computed from the matrix function a(y) on Y :

baij =
∫

Y

[
aij(y) +

N∑
k=1

aik(y)
∂wk

a

∂yj
(y)

]
dy, (5)

where the auxiliary functions wk
a are Y -periodic solutions to the so-called cell-problem

Problem (Pper[a]) Find a vector function wa = (w1
a, . . . , w

N
a ), wk

a ∈W 1,2
per (Y ) satisfying

∫
Y

 N∑
i,j=1

aij(y)
∂wk

a

∂yj

∂ϕ

∂yi
+

N∑
i=1

aik(y)
∂ϕ

∂yi

dy = 0 ∀ϕ ∈W 1,2
per (Y ) and

∫
Y
wk

a(y) dy = 0. (6)

It can be proved that the homogenized coefficients baij form also a positive definitive matrix.
If aij are symmetric, then the matrix ba is in the class satisfying estimates (2) with the same
constants, i. e. if a ∈ E(α,M) then also ba ∈ E(α,M).

4 Method of reliable solution

Let U ad be a subset of E(α,M) and f ∈ L2(Ω). Then for each a ∈ U ad we have a homoge-
nization problem consisting of a sequence ε ∈ E of problems (P[aε]), sequence of the solutions
uaε , homogenized coefficient matrix ba, the homogenized problem (P[ba]) and its homogenized
solution uba . Let us choose a functional Φ on U ad which evaluates hazardousness of the situation,
i. e. of the homogenized solution uba .

We have to prove that the functional Φ is bounded and attains its maximum on U ad. Then
we evaluate the maximum and find the data which yields this maximum.

The proof is based on the following well known property. If the set U ad is compact and
Φ : U ad → R is continuous on U ad with respect to the same topology, then the image of
Φ(U ad) in R is also compact, i. e. it is a bounded closed set in R, which has a maximum.

The set of admissible data U ad. Homogenization theory was built for modeling of com-
posite materials. For simplicity we shall deal with a two component composite material with
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periodic structure. Let Y1 be a closed subset of the cell Y representing reinforcing fibres and
its complement Y0 = Y − Y1 representing the matrix. Let the parameters p1

ij of the fibres (e. g.
stiffness or conductivity, etc.) be in closed intervals I1

ij and parameters p0
ij of the matrix be in

closed intervals I0
ij . Then the coefficients aij will be defined as a piecewise constant functions

aij(y) =

{
p1

ij for y ∈ Y1,

p0
ij for y ∈ Y0

(7)

on the cell Y and by periodicity extended to RN .
The set of all such functions aij(y) with p1

ij ∈ I1
ij and p0

ij ∈ I0
ij will be the set of admissible

functions U ad. By its construction it is a bounded closed subset in L∞per(Y ) and due to its finite
dimension it is compact – it can be represented by a product of finite number of bounded closed
intervals. Since the parameters describes real materials we can suppose that U ad is a subset of
E(α,M) for some convenient 0 < α ≤M .

Generalization to finite number of components of the composite material causes no problem:
the cell Y is decompose into more subsets Y = Y0 ∪ Y1 ∪ · · · ∪ Yk, compactness of U ad remains.

Criterion functional. How to choose the functional Φ evaluating dangerous situations? Since
in dimension N ≥ 2 functions from W 1,2(Ω) need not be continuous, we cannot take values of
the solution in a single point. Instead of it we choose a small subset Ω∗ of Ω of positive measure
which covers the critical place and put the integral mean of over it. In homogenization we test
the values of the homogenized solution uba , thus

Φ(a) =
1
|Ω∗|

∫
Ω∗
uba(x) dx,

Another possibility is to test gradient of the homogenized solution uba . The functional Φ can
depend even on the values of a, in homogenization we can take into account also e. g. correctors.
Looking for a maximum, the functional may be only upper semi-continuous only.

Let us introduce the result proved in [4]:

Theorem. The functional Φ on U ad attains its maximum.

Idea of the proof. Having a compact set U ad the proof of existence of the maximum is based on
continuity of the functional Φ, i. e. the property

an → a0 =⇒ Φ(an)→ Φ(a0).

Indeed, let m∗ be the supremum of Φ on U ad, in general, it can be also plus infinity. Let
us consider a sequence {an} in U ad such that Φ(an) tends to m∗. Since U ad is compact, the
sequence {an} contains a subsequence {an′} and there exists an element a∗ ∈ U ad such that
an′ → a∗. Due to continuity Φ(a∗) = limn′→∞Φ(an′) = m∗. Since m∗ is a value of Φ on an
element of U ad, m∗ is finite and Φ attains its maximum on U ad in a∗.

In the model problem (4) on U ad the topology of the uniform convergence can be chosen,
i. e. the maximizing sequence {an} is uniformly converging. Let a, a′ ∈ U ad, then using notation
of Section 3 the continuity of the functional Φ is a consequence of the following estimates:

|Φ(a)− Φ(a′)| ≤ const. ‖uba − uba′‖W 1,2(Ω),

‖uba − uba′‖W 1,2(Ω) ≤ const. maxi,j

∣∣∣baij − ba′ij ∣∣∣ ,
maxi,j

∣∣∣baij − ba′ij ∣∣∣ ≤ const. ‖wa − wa′‖W 1,2
per(Y,RN )

,

‖wa − wa′‖W 1,2
per(Y )

≤ const. ‖a− a′‖L∞(Y,RN×N ).

(8)
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5 Generalization to nonlinear monotone operator problem

There are several generalizations of the linear problem. Let us introduce the case of an
equation with monotone operator published in [2]:

Problem (PM [a]) Find a function ua ∈W 1,2
0 (Ω) satisfying∫

Ω

N∑
i=1

ai(x,∇ua)
∂v

∂xi
dx =

∫
Ω
fv dx for all v ∈W 1,2

0 (Ω).

To obtain solvability of the problems, the coefficients ai(y, ξ) : RN × RN → R are supposed
to satisfy strong monotonicity and Lipschitz continuity in ξ with some constants 0 ≤ α ≤M∑N

i=1 (ai(y, ξ)− ai( y, η))(ξi − ηi) ≥ α ·
∑N

i=1(ξi − ηi)2 ∀y, ξ, η ∈ RN ,

|ai(y, ξ)− ai(y, η)| ≤ M · |ξ − η| ∀y, ξ, η ∈ RN .
(9)

Since the homogenization problem is studied, the coefficients are supposed to be Y -periodic in y.
To obtain a compact set, each function ai(y, ξ) in U ad is piecewise constant in y on each part Yj

of the cell Y like in (7), i. e. ai(y, ξ) = pj
i (ξ) for y ∈ Yj . Further each pj

i (ξ) depends on ξi only.
Outside of a fixed bounded interval Ji = 〈ξl

i, ξ
r
i 〉 the function pj

i (xii) is extended to R linearly
with a given slope cji . Due to (9) inside the interval Ji the functions pj

i (ξi) satisfy assumptions of
the Arzelà-Ascoli theorem and thus the functions ai(y, ξ) form a set U ad

i compact with respect
to uniform convergence. Then cartesian product U ad

1 × · · · ×U ad

N yields a compact set U ad of
admissible data, for details see [2].

As in the linear case for a scale E by (1) we obtained a sequence of problems (PM [aε])
which yields a sequence of solutions uaε . In theory of monotone operator homogenization there
exist results giving formulae for homogenized coefficients analogous to (5), (6). Using estimates
analogous to (8) continuity of Φ and existence of a maximum over U ad can be proved.

Conclusion

In the contribution the method of reliable solution in periodic homogenization was introduced
for linear problems and a generalization to nonlinear monotone operator problem from [2] was
outlined. Choosing a convenient compact set of admissible data U ad and suitable estimates
analogous to (8) in other generalization including evolutionary problems the existence of solution
to the worst scenario method can be proved.
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