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Abstract: We deal with an initial-boundary value problem describing the perpendicular vibrations of a
viscoelastic Kármán-Donnell shell with a rigid inner obstacle. A weak formulation of a problem is in a
form of a hyperbolic variational inequality. We solve this problem using the penalization method

1 INTRODUCTION AND NOTATION

Contact problems represent an important but complex topic of applied mathematics. For elastic
problems there is only a very limited amount of results available (cf. [4] [5] and there cited
literature). Viscosity makes possible to prove the existence of solutions for a broader set of
problems for membranes, bodies as well as for linear models of plates. The von Kármán plate
made of a short memory material in a dynamic contact was studied in [3]. The aim of the present
paper is to extend these results to the nonlinear von Kármán-Donnell shells. The presented
results also extend the research made for the quasistatic contact problems for viscoelastic shells
(cf. [2]).

The existence of solutions is proved for an approximate penalized problem at first. The limit
process to the original problem is enabled by an L1 estimate of the penalty term and by the use
of the compact imbedding theorem and by a proper use of the interpolation technique.

Let Ω ⊂ R2 be a bounded convex polygonal or C2 domain with a boundary Γ and I ≡ (0, T )
be a bounded time interval. The unit outer normal vector is denoted by n = (n1, n2), τ =
(−n2, n1) is the unit tangent vector. The displacement is denoted by u ≡ (ui). Further employed
notations are ∂

∂s ≡ ∂s,
∂2

∂s∂r ≡ ∂sr, ∂i = ∂xi , i = 1, 2, 3,
v̇ = ∂v

∂t , v̈ = ∂2v
∂t2
, Q = I ×Ω, S = I × Γ.

A shallow isotropic shell is occupying the domain

A = {(x, z) ∈ R3 : x = (x1, x2) ∈ Ω, |z − S(x)| < h},

where z = S(x), x ∈ Ω is a middle surface of a shell.
Strain tensor is defined as

εij(u) =
1
2

(∂iuj + ∂jui + ∂iu3∂ju3)− kiju3 − x3∂iju3, i, j = 1, 2;

εi3 ≡ 0, i = 1, 2, 3

with k12 = 0 and the curvatures kii > 0, i = 1, 2.
Further, we denote

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v.

In the sequel, we denote by W k
p (M), k ≥ 0, p ∈ [1,∞] the Sobolev (for a noninteger p the

Sobolev-Slobodetskii) spaces defined on a domain or an appropriate manifold M . By W̊ k
p (M)
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the spaces with zero traces are denoted. If p = 2 we use the notation Hk(M), H̊k(M). The
duals to H̊k(M) are denoted by H−k(M). For the anisotropic spaces W k

p (M), k = (k1, k2) ∈
R2

+, R+ = (0,∞), k1 is related with the time while k2 with the space variables (with the obvious
consequences for p = 2). By C we denote the space of continuous functions with the appropriate
sup-norm. By H, H̊ we denote the spaces L∞(I;H2(Ω)), L∞(I; H̊2(Ω)), respectively. The
following generalization of the Aubin’s compactness lemma verified in [6] Theorem 3.1 will be
essentially used:

Lemma 1.1 Let B0 ↪→↪→ B ↪→ B1 be Banach spaces, the first reflexive and separable. Let
1 < p <∞, 1 ≤ q <∞. Then

W ≡ {v; v ∈ Lp(I;B0), v̇ ∈ Lq(I,B1)} ↪→↪→ Lp(I;B).

2 CONTACT OF A VISCOELASTIC SHELL
WITH A SHORT MEMORY

The constitutional law has the form

σij(u) = E1
1−µ2∂t

(
(1− µ)εij(u) + µδijεkk(u)

)
+ E0

1−µ2

(
(1− µ)εij(u) + µδijεkk(u)

)
.

The constants E0, E1 > 0 are the Young modulus of elasticity and the modulus of viscosity,
respectively, µ ∈ (0, 1

2) is the Poisson ratio. We involve also the rotation inertia expressed by
the term a∆ü in the first equation of the considered system with a = h2

12 . It will play the crucial
role in the deriving a strong convergence of the sequence of velocities {u̇m} in the appropriate
space. Further we denote b = h2

12ρ(1−µ2)
the material constant with ρ > 0 the density of the

material. We concentrate for simplicity on the case of a free plate.
The classical formulation generalizes the elastic case derived in [8] and is composed of the

system

ü+ a∆ü+ b(E1∆2u̇+ E0∆2u)− [u, v]− k11∂22v − k22∂11v = f + g,

u ≥ 0, g ≥ 0, ug = 0,

∆2v+
E1∂t(1

2 [u, u] + k11∂22u+ k22∂11u) + E0(1
2 [u, u] + k11∂22u+ k22∂11u) = 0

 on Q, (1)

the boundary conditions

u ≥ 0, Σ1(u) ≥ 0, uΣ1(u) = 0,
M1(u) = 0, v = 0 and ∂nv = 0 on S,
M1(u) = b[E1M(u̇) + E0(u)],
Σ1(u) = b[E1V (u̇) + E0V (u)]− aü

(2)

and the initial conditions
u(0, ·) = u0 ≥ 0, u̇(0, ·) = u1 on Ω. (3)

We introduce cone K := {y ∈ H1,2(Q); ẏ ∈ L2(I;H1(Ω)), y ≥ 0} and bilinear form

A(u, y) = ∂11u∂11y + ∂22u∂22y + µ∂11u∂22y + ∂22u∂11y + 2(1− µ)∂12u∂12y .

Then the variational formulation of the problem (1–3) has the following form:
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Find {u, v} ∈ K × L2(I; H̊2(Ω)) such that u̇ ∈ L2(I;H2(Ω)) and the following system∫
Q

(E1A(u̇, y1 − u) + E0A(u, y1 − u)− ([u, v] + k11∂22v + k22∂11v)(y1 − u)) dx dt

−
∫
Q

(a∇u̇ · ∇(ẏ1 − u̇) + u̇(ẏ1 − u̇)) dx dt

+
∫
Ω

(a∇u̇ · ∇(y1 − u) + u̇(y1 − u)) (T, ·) dx (4)

≥
∫
Ω

(a∇u1 · ∇(y1(0, ·)− u0) + u1(y1(0, ·)− u0)) dx+
∫
Q
f(y1 − u) dx dt,∫

Ω
∆v∆y2 dx = (5)

−
∫
Ω

(
E1∂t(

1
2

[u, u] + k11∂22u+ k22∂11u) + E0(
1
2

[u, u] + k11∂22u+ k22∂11u)
)
y2 dx

is satisfied for all (y1, y2) ∈ K × H̊2(Ω).
We define the bilinear operator Φ : H2(Ω)2 → H̊2(Ω) and the linear operators ∆k : H2(Ω) 7→

L2(Ω), L : H2(Ω)→ H̊2(Ω) by means of the variational equations and the identity∫
Ω

∆Φ(u, v)∆ϕdx =
∫
Ω

[u, v]ϕdx ∀ϕ ∈ H̊2(Ω), (6)

∆kv = k11∂22v + k22∂11v ∀v ∈ H2(Ω), (7)∫
Ω

∆Lu∆ϕdx =
∫
Ω

∆kuϕdx ∀ϕ ∈ H̊2(Ω). (8)

The equation (6) has a unique solution, because [u, v] ∈ L1(Ω) ↪→ H2(Ω)∗. The well-defined
operator Φ is evidently compact and symmetric. The domain Ω fulfils the assumptions enabling
us to apply Lemma 1 from [7] due to which Φ : H2(Ω)2 →W 2

p (Ω), 2 < p <∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈W 1
p (Ω). (9)

The right-hand side of the equation (8) represents the linear bounded functional over H̊2(Ω) and
hence the operator L : H2(Ω) 7→ H̊2(Ω) is uniquely defined. Moreover it is compact due to the
compact imbedding H1(Ω) ↪→↪→ H2(Ω). Further it fulfils L : H2(Ω) 7→ W 2

p (Ω), 2 < p < ∞
and

‖Lu‖W 2
p (Ω) ≤ c‖u‖H2(Ω) ∀u ∈ H2(Ω). (10)

The Airy stress function v can be expressed in the form

v = −E1∂t(
1
2

Φ(u, u) + Lu)− E0(
1
2

Φ(u, u) + Lu)

and we reformulate the system (4) ,(5) into the following variational inequality:

Problem P. Find u ∈ K such that u̇ ∈ L2(I;H2(Ω)) and the inequality∫
Q (E1A(u̇, y − u) + E0A(u, y − u)) dx dt

+
∫
Q[u,E1∂t(1

2Φ(u, u) + Lu) + E0(1
2Φ(u, u) + Lu)](y − u) dx dt

+
∫
Q ∆k

(
E1∂t(1

2Φ(u, u) + Lu) + E0(1
2Φ(u, u) + Lu)

)
(y − u) dx dt

−
∫
Q (a∇u̇ · ∇(ẏ − u̇) + u̇(ẏ − u̇)) dx dt+

∫
Ω (a∇u̇ · ∇(y − u) + u̇(y − u)) (T, ·) dx

≥
∫
Ω (a∇u1 · ∇(y(0, ·)− u0) + u1(y(0, ·)− u0)) dx+

∫
Q f(y1 − u) dx dt

(11)

is satisfied for any y ∈ K.



6

For any η > 0 we define the penalized problem
Problem Pη. Find u ∈ H1,2(Q) such that u̇ ∈ L2(I;H2(Ω)), ü ∈ L2(I;H1(Ω)),
the equation ∫

Q

(
üz + a∇ü · ∇z + E1A(u̇, z) + E0A(u, z)

)
dx dt

+
∫
Q[u,E1∂t(1

2Φ(u, u) + Lu) + E0(1
2Φ(u, u) + Lu)]z dx dt

+
∫
Q ∆k

(
E1∂t(1

2Φ(u, u) + Lu) + E0(1
2Φ(u, u) + Lu)

)
z dx dt

=
∫
Q(f + η−1u−)z dx dt,

(12)

holds for any z ∈ L2(I;H2(Ω)) and the conditions (3) remain valid.
Applying the Galerkin method, we obtain in a similar way as in [3] the existence and unique-

ness of a solution to the penalized problem with the a priori estimates

‖u̇‖2L2(I;H2(Ω)) + ‖u̇‖2L∞(I;H1(Ω)) + ‖u‖2L∞(I;H2(Ω))

+‖∂tΦ(u, u)‖2L2(I;H2(Ω)) + ‖∂tLu‖2L2(I;H2(Ω)) ≤ c ≡ c(f, u0, u1).
(13)

Moreover the estimates (9), (10) imply

‖∂tΦ(u, u)‖L2(I;W 2
p (Ω)) + ‖∂tLu‖L2(I;W 2

p (Ω)) ≤ cp ≡ cp(f, u0, u1) ∀ p > 2. (14)

The estimates are obviously η independent. Since for a fixed η > 0 the penalty term η−1u− be-
longs to H1(Q), this together with (13) and (12) yields an estimate of ü−a∆ü in L2(I;H2(Ω)∗).
Applying the a priori estimates of solutions to the penalized problem we obtain

Theorem 2.1 Let f ∈ L2(Q), ui ∈ H2(Ω), i = 0, 1. Then there exists a solution u ∈ H1,2(Q)
of the contact Problem P.

Proof. We perform the limit process η ↘ 0 and write uη for the solution of the problem Pη.
To get the crucial estimate for the penalty, we put z = 1 in (12). We get∫

Q
η−1u−η dx dt =

∫
Q

(üη − f) dx dt =
∫
Q

(u̇η(T, ·)− u1) dx−
∫
Q
f dx dt

and the estimate
‖η−1u−η ‖L1(Q) ≤ c(f, u0, u1). (15)

which is independent of η. The standard imbedding H2(Ω) ↪→ L1(Ω) and the a priori estimates
(13) and (14) imply for the functional ϕη given as

ϕη : w 7→
∫
Q
a∇u̇η∇w + u̇ηw dxdt (16)

the estimate ‖ϕ̇η‖L1(I;H2(Ω)∗) ≤ c.
Applying Lemma 1.1 we obtain that the system {ϕη; η > 0} is relatively compact in L2(I;H1(Ω)∗).
The a priori estimates (13), (14), the last relative compactness and the standard theory of

linear elliptic equations yield the existence of a sequence ηk ↘ 0 such that for uk ≡ uηk
the

following convergence hold for any real p ≥ 1:

u̇k ⇀ u̇ in L2(I;H2(Ω))
u̇k → u̇ in L2(I;W 1

p (Ω)),
uk → u in C(I;W 1

p (Ω)),
1
2∂tΦ(uk, uk) + ∂tLuk ⇀

1
2∂tΦ(u, u) + ∂tLu in L2(I;W 2

p (Ω)).

(17)

The crucial strong convergence of the derivatives is the consequence of the relative compactness
of {ϕη; η > 0} and of the first weak convergence in (17) (see [3]) for details. Inserting the test
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function z = y−uk in (12) for y ∈ K, performing the integration by parts in the terms containing
ü, applying the convergence (17) and the weak lower semicontinuity verifies that the limit u is
a solution of the original problem P.

Remark 2.2 The initial-boundary value problem for a dynamic contact of a clamped shell with
Dirichlet zero boundary for deflections can be formulated and solved analogously as in the case
of the viscoelastic plate in [3].
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