ON DECOMPOSITIONS OF ISOMETRIES DEFINED BY A SZEGÖ PROPERTY

Z. BURDAK a, M. KOSIEK b, P. PAGACZ ${ }^{b}$, AND M. SŁOCIŃSKI ${ }^{b}$

Abstract

We consider a Szegö property which defines a unique Szegö decomposition of a measure. The Szegö decomposition of a measure generates Szegö decomposition of an isometry via elementary measures in a similar way like Lebesgue decomposition. However, Szegö decomposition of an isometry is not unique. Therefore, a class of Szegö type decompositions of an isometry is considered. Two such decompositions are defined. We give a few examples, describe some properties and applications.

1. Szegö property

A Borel measure μ on the σ-algebra of all Borel subsets of the unit circle $\mathcal{B}(\mathbb{T})$ is called a Szegö measure, if for any $\omega \in \mathcal{B}(\mathbb{T})$ the inclusion $\chi_{\omega} L^{2}(\mu) \subset H^{2}(\mu)$ implies $\mu(\omega)=0$. We have the following (see [4]):

Proposition 1. A measure μ is a Szegö measure if and only if
(1) μ is absolutely continuous with respect to the Lebesgue measure m on \mathbb{T},
(2) $\log \frac{d \mu}{d m}$ is Lebesgue integrable.

The measure μ is Szegö singular if $H^{2}(\mu)=L^{2}(\mu)$. Moreover, each Borel regular measure μ on \mathbb{T} has a unique decomposition

$$
\mu=\chi_{\omega} \mu+\chi_{\mathbb{T} \backslash \omega} \mu
$$

where ω is a μ-essentially unique Borel set, $\chi_{\omega} \mu$ is a Szegö measure and $\chi_{\mathbb{T} \backslash \omega} \mu$ is Szegö singular. The proposition above shows relations between Szegö and Lebesgue decompositions. Every singular measure is Szegö singular and every Szegö measure is absolutely continuous to the Lebesgue measure. However, there are Szegö singular measures which are absolutely continuous to the Lebesgue measure.

2. Szegö decompositions of an isometry

Let $B(H)$ denote the algebra of all bounded linear operators on a complex Hilbert space H. For a given isometry $V \in B(H)$ denote by $H=H_{u} \oplus H_{s}$ its Wold decomposition and by E a spectral measure of its minimal unitary extension. For every $x \in H$ the mapping $\mu_{x}: \mathcal{B}(\mathbb{T}) \ni \omega \rightarrow\langle E(\omega) x, x\rangle$ is a positive Borel measure. The measure μ_{x} is called an elementary measure of x (and V). The Lebesgue decomposition of an isometry $V \in L(H)$ stands for $H=H_{\text {sing }} \oplus H_{a c}$ where $H_{\text {sing }}, H_{a c}$ reduce V and measure μ_{x} is singular for $x \in H_{\text {sing }}$ and μ_{x} is absolutely continuous to the Lebesgue measure for $x \in H_{a c}$. Similar idea is used in a definition of a Szegö decomposition of an isometry. However, since a Szegö property is not preserved by a linear combination of vectors a linear span is used in the definition:

Definition 2. We call an isometry $V \in B(H)$ a Szegö isometry if H is spanned by vectors which elementary measures are Szegö. We call an isometry $V \in B(H)$ a Szegö singular isometry if an elementary measure of any vector is Szegö singular.

We say that a decomposition $V=V_{1} \oplus V_{2}$ is a Szegö-type decomposition if V_{1} is a Szegö singular isometry and V_{2} is a Szegö isometry.

[^0]A Szegö singular isometry is a unitary operator and a unilateral shift is a Szegö isometry. A class of Szegö singular isometries is bigger that a class of singular isometries. However, not all unitary isometries are Szegö singular. In conclusion $H_{\text {sing }} \subset H_{S z-\text { sing }} \subset H_{u}$ and each inclusion can be proper where $H_{S z-s i n g}$ denote a subspace reducing an isometry to a Szegö singular isometry.

There are different Szegö-type decompositions of an isometry. Natural examples introduced in [1] and [2] base on so-called wandering vectors. Recall that a vector w is called wandering if and only if $\left\langle V^{n} w, w\right\rangle=0$, for all $n \in \mathbb{Z}_{+}$. It turns out that elementary measure of a wandering vector is a Szegö measure. Let us characterize Szegö singular isometries.

Proposition 3. Let $V \in B(H)$ be an isometry. Let $L \subset H$ be a reducing subspace for V. Then each invariant (for V) subspace of L is reducing if and only if each elementary measure μ_{x} for $x \in L$ is Szegö singular.

Now we introduce two Szegö type decompositions.
First, let us consider the reducing subspace $H_{0}:=H \ominus H_{w}$, where H_{w} is the subspace spanned by all wandering for V vectors. By [1] subspaces H_{w} and H_{0} are reducing. Since an elementary measure of a wandering vector is Szegö then it can be showed that the decomposition $H=H_{0} \oplus H_{w}$ is a Szegö-type decomposition. Such a decomposition will be called I Szegö-type decomposition.

For the second decomposition, note that since wandering vectors have elementary measures Szegö then a unilateral shift and a bilateral shift are Szegö isometries. Consider the decomposition $H=H_{1} \oplus H_{2}$ such that H_{2} reduce V to a direct sum of unilateral and bilateral shifts, and H_{1} does not contain any wandering vector. Then $H=H_{1} \oplus H_{2}$ generates a Szegö-type decomposition of V. This decomposition is not unequivocal. Thus we define the subspace

$$
H_{n s}:=\bigcap\left\{H_{1}: H \ominus H_{1} \text { reduce } V \text { to a direct sum of unilateral and bilateral shifts }\right\} \text {. }
$$

For the orthogonal complement we have

$$
\left(H_{n s}\right)^{\perp}:=\bigvee\left\{H_{2}: H_{2} \text { reduce } V \text { to a direct sum of unilateral and bilateral shifts }\right\} .
$$

The decomposition $H=H_{n s} \oplus\left(H_{n s}\right)^{\perp}$ is a Szegö-type decomposition of V. It will be called $I I$ Szegö-type decomposition.

For the example that justifies contradistinction of above decompositions let us first show some calculation. Set $S \in B\left(\bigoplus_{n=0}^{\infty} \ell^{2}\right)$ a unilateral shift of infinite multiplicity:

$$
S\left(\left[\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\right)=\left[\begin{array}{cccc}
0 & a_{11} & a_{12} & \cdots \\
0 & a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Let $\left\{c_{n}\right\}_{n \geq 0}$ be a sequence of nonnegative numbers such that $\sum_{n \geq 0} c_{n}<\infty$.
Then

$$
v=\left[\begin{array}{cccc}
\sqrt{c_{1}} & -\sqrt{c_{1}} & 0 & \cdots \\
\sqrt{c_{2}} & 0 & -\sqrt{c_{2}} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

is well defined vector in $\bigoplus_{n=0}^{\infty} \ell^{2}$ such that $\left\langle S^{n} v, v\right\rangle=-c_{n}$ for any positive n. For a non unitary isometry $V \in L(H)$ if $x \in H_{u}$ is such that $\left\{\left\langle V^{n} x, x\right\rangle\right\}_{n \geq 0}$ is a convergent sequence of positive numbers then for v as above where $c_{n}=\left\langle V^{n} x, x\right\rangle$ the vector $x+v$ is wandering. Since $v \in H_{s} \subset$ H_{w} then $x \in H_{w}$.

Example 4. Denote $\mathbb{T}_{+}:=\{z \in \mathbb{T}: \Im z>0\}$ and μ a Lebesgue measure on \mathbb{T}_{+}. Set $H=$ $L^{2}(\mu) \oplus H^{2}(m)$ and denote by $V \in B(H)$ an operator of multiplication by " $z^{\prime \prime}$. Then it is
easy to see that $H_{n s}=L^{2}(\mu)$. There is a vector $u \in L^{2}(\mu)$ such that $\left\{\left\langle V^{n} u, u\right\rangle\right\}_{n \geq 0}$ is a convergent sequence of positive numbers. Therefore $u+v$ is a wandering vector where v is a vector constructed as it was described. Consequently H_{w} is bigger that $H^{2}(\mu)$. In fact it can be showed that $H_{w}=H$ and $H_{0}=\{0\}$.
I and $I I$ Szegö type decompositions are related by the inclusion $H_{0} \subset H_{n s}$ which can be proper.

3. Application

Some motivation of investigating Szegö property was a description of a semigroup of isometries. By the canonical multiple Wold decomposition of a pair of isometries $V_{1}, V_{2} \in L(H)$ we denote a decomposition $H=H_{u u} \oplus H_{u s} \oplus H_{s u} \oplus H_{s s}$, where $\left.V_{1}\right|_{H_{u u}},\left.V_{2}\right|_{H_{u u}},\left.V_{1}\right|_{H_{u s}},\left.V_{2}\right|_{H_{s u}}$ are unitary operators and $\left.V_{1}\right|_{H_{s s}},\left.V_{2}\right|_{H_{s s}},\left.V_{2}\right|_{H_{u s}},\left.V_{1}\right|_{H_{s u}}$ are unilateral shifts. Such a decomposition does not always exist. In the general case there is additional summand $H=H_{u u} \oplus H_{u s} \oplus H_{s u} \oplus H_{s s} \oplus H_{n c a n}$, where $H_{n c a n}$ reduces V_{1}, V_{2} to a non-canonical pair. A pair of isometries is called non-canonical if it can not be non-trivially reduced to a pair having a canonical decomposition. In other words for any $L \subset H_{\text {ncan }}$ reducing V_{1}, V_{2} at least one of $\left.V_{1}\right|_{L},\left.V_{2}\right|_{L}$ has non-trivial Wold decomposition as a single isometry. Assume isometries commute and set $H_{s i n g}^{i} \oplus H_{a c}^{i}$ the Lebesgue decomposition of an isometry V_{i} for $i=1,2$. Since the Lebesgue decomposition is hyperreducing it can be showed that $H_{n c a n} \subset H_{a c}^{1} \cap H_{a c}^{2}$. It turns out that I Szegö decomposition is also hyperreducing. Therefore there is a decomposition
Theorem 5. Let $V_{1}, V_{2} \in B(H)$ be commuting isometries. Then there is

$$
H=H_{00} \oplus H_{w 0} \oplus H_{0 w} \oplus H_{w w}
$$

into subspaces reducing V_{1}, V_{2} where:

- $H_{00}, H_{0 w}$ are of type H_{0} for V_{1} and $H_{00}, H_{w 0}$ are of type H_{0} for V_{2},
- $H_{w 0}, H_{w w}$ are linearly spanned by vectors wandering for V_{1} and $H_{0 w}, H_{w w}$ are linearly spanned by vectors wandering for V_{2}.

Subspaces $H_{00}, H_{0 w}, H_{w 0}$ reduce both isometries to canonical pairs because in every such a pair at least one operator is unitary. Consequently $H_{n c a n} \subset H_{w w}$. The I Szegö decomposition remains in a very close relation with the Lebesgue decomposition. Although this decompositions are not equal, in the interesting cases they give similar results. Therefore $H_{n c a n} \subset H_{w w}$ refines $H_{n c a n} \subset H_{a c}^{1} \cap H_{a c}^{2}$ by giving another description rather that significantly smaller superspace of $H_{n c a n}$.

Unitary operator $U \in B(H)$ is called a span of bilateral shifts if $H=\overline{\bigvee H_{n}}$ where $\left.V\right|_{H_{n}}$ is a bilateral shift for every n. As a consequence of $H_{n c a n} \subset H_{w w}$ we have the following:
Corollary 6. If $V_{1}, V_{2} \in B(H)$ is a completely non-canonical pair then unitary extension of each isometry is a span of bilateral shifts.

A span of bilateral shifts may not be a bilateral shift. As an example take operator of multiplication by independent variable " $z^{\prime \prime}$ on the space $L^{2}\left(\mathbb{T}_{+}\right) \oplus L^{2}\left(\mathbb{T}_{-}\right) \oplus L^{2}\left(\mathbb{T}_{+}\right)$where $\mathbb{T}_{+}, \mathbb{T}_{-}$are upper and bottom half-circles respectively. However, if a span of bilateral shifts contains a bilateral shift of multiplicity ∞ then it is a bilateral shift. Recall from [3] that
Theorem 7. Let $V_{1}, V_{2} \in B(H)$ be commuting isometries such that dim ker $V_{1}^{*}<\infty$ then Wold decomposition of V_{2} reduces also V_{1}.

Assume that $V_{1}, V_{2} \in B(H)$ are commuting isometries such that $H=H_{n c a n}$. By above theorem at least one of wandering subspaces is infinite dimensional. If dim ker $V_{1}^{*}<\infty$ then by the above theorem H_{u}^{2} (subspace reducing V_{2} to a unitary operator) reduces both isometries. On the other hand a unitary operator $\left(\left.V_{2}\right|_{H_{u}^{2}}\right)$ commuting with other isometry has a canonical multiple Wold decomposition. Therefore by assumption $H=H_{n c a n}$ we conclude that $H_{u}^{2}=\{0\}$ and consequently V_{2} is a unilateral shift of infinite multiplicity. In conclusion if $H=H_{\text {ncan }}$ then unitary extension of at least one of isometries is a bilateral shift of infinite multiplicity.

References

[1] Z. Burdak, M. Kosiek, P. Pagacz, M. Słociński, Shift-type properties of commuting, completely non doubly commuting pairs of isometries, Itegral Equations Operator Theory, 79(2014), 107-122.
[2] Z. Burdak, M. Kosiek, P. Pagacz, M. Słociński, Decompositions of Szego-type for isometries, submitted.
[3] Z. Burdak, M. Kosiek, M.Sociski, The canonical Wold decomposition of commuting isometries with finite dimensional wandering spaces, Bulletin des Sciences Mathmatiques (2013), 653-658.
[4] C. Foiaş, I. Suciu, Szegö-type measures and spectral properties in Hilbert spaces, Rev. Roum. Pures et Appl. $11(2)(1966), 147-159$.
${ }^{a}$ Departament of Applied Mathematics University of Agriculture in Kraków
${ }^{b}$ Jagiellonian University.
E-mail address: rmburdak@cyf-kr.edu.pl

[^0]: 2010 Mathematics Subject Classification. 47B20.

