D-WEAK OPERATOR TOPOLOGY AND SOME ITS PROPERTIES

MARCEL POLAKOVIČ

1. INTRODUCTION

Effect algebras as algebraic structures were introduced by Foulis and Bennett in [1]. Generalized effect algebras are natural generalization of effect algebras (without a top element 1). In [2], an example $\mathcal{G}_D(\mathcal{H})$ of generalized effect algebra was investigated, which consisted from positive operators defined on a dense subspace D of a Hilbert space \mathcal{H} . In [3], some topological properties of $\mathcal{G}_D(\mathcal{H})$ were investigated, where the D-weak operator topology on $\mathcal{G}_D(\mathcal{H})$ was introduced. In the present contribution, some more properties of this topology are mentioned.

2. Preliminaries and results

Let us define the generalized effect algebra.

Definition 1.

- (1) A generalized effect algebra $(E, \oplus, 0)$ is a set E with element $0 \in E$ and partial binary operation \oplus satisfying for any $x, y, z \in E$ conditions
- (GE1) $x \oplus y = y \oplus x$ if one side is defined
- (GE2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined
- (GE3) If $x \oplus y = x \oplus z$ then y = z
- (GE4) If $x \oplus y = 0$ then x = y = 0
- (GE5) $x \oplus 0 = x$ for all $x \in E$.
- (2) Define a binary relation \leq on E by $x \leq y$ iff for some $z \in E, x \oplus z = y$.

Let $\mathcal H$ be a separable infinite-dimensional complex Hilbert space and let D be its dense linear subspace. Let

 $\mathcal{G}_D(\mathcal{H}) = \{A : D \to \mathcal{H} \mid A \text{ is a positive linear operator defined on } D\}.$

In [2], it is shown that $(\mathcal{G}_D(\mathcal{H}); \oplus, 0)$ is a generalized effect algebra where 0 is the null operator and \oplus is the usual sum of operators defined on D.

Let $Q \in \mathcal{G}_D(\mathcal{H})$. The set

$$[0,Q]_{\mathcal{G}_D(\mathcal{H})} = \{A \in \mathcal{G}_D(\mathcal{H}) \mid 0 \le A \le Q\}$$

is called an interval in $\mathcal{G}_D(\mathcal{H})$ and it has a natural structure of effect algebra (see [4]) and consequently, also of generalized effect algebra.

D-weak operator topology on $\mathcal{G}_D(\mathcal{H})$ was defined in [3] as the weakest topology such that all functions $f_x : \mathcal{G}_D(\mathcal{H}) \to \mathbb{R}$ where $f_x(A) = (x, Ax), x \in D$, are continuous. We denote this topology by $\tau_{D,\mathcal{G}}^w$. In [3] it is denoted by τ_D . Let us note that $\tau_{D,\mathcal{G}}^w$ and τ_D are strictly not completely the same as in [3] the set $\mathcal{G}_D(\mathcal{H})$ is defined in slightly different manner than it is in the present contribution.

Let $\mathcal{S}_D(\mathcal{H})$ denotes the set of all symmetric linear operators on \mathcal{H} with domain D. Clearly

$$\mathcal{G}_D(\mathcal{H}) = \{ A \in \mathcal{S}_D(\mathcal{H}) \mid A \ge 0 \}.$$

 $S_D(\mathcal{H})$ is a linear space and for $x, y \in D$ the function $\rho_{x,y} : S_D(\mathcal{H}) \to \mathbb{R}$, $\rho_{x,y}(A) = |(x, Ay)|$ is a seminorm. The family of seminorms $\{\rho_{x,y}\}_{x,y\in D}$ separates points. So $(S_D(\mathcal{H}), \{\rho_{x,y}\}_{x,y\in D})$ is a locally convex space. The corresponding natural topology we denote by $\tau_{D,S}^w$ and call the *D*-weak operator topology on $\mathcal{S}_D(\mathcal{H})$. It can be seen that $\tau_{D,\mathcal{S}}^w$ is a natural generalization of the usual weak operator topology on $\mathcal{B}(\mathcal{H})$ (the set of all bounded operators defined on the whole space \mathcal{H}). (The weak operator topology on $\mathcal{B}(\mathcal{H})$ is the natural topology of the locally convex space $(\mathcal{B}(\mathcal{H}), \{\rho_{x,y}\}_{x,y\in\mathcal{H}})$, here $\rho_{x,y}(A) = |(x, Ay)|$ for $A \in \mathcal{B}(\mathcal{H}), x, y \in \mathcal{H}$.)

If $A_{\alpha}, A \in \mathcal{S}_D(\mathcal{H}), A_{\alpha}$ is a net, then $A_{\alpha} \xrightarrow{\tau_{D,S}^w} A$ if and only if $(x, (A_{\alpha} - A)y) \to 0$ for all $x, y \in D$. But from the polarization formula we have that this happens if and only if $(x, (A_{\alpha} - A)x) \to 0$ for all $x \in D$, i.e. $(x, A_{\alpha}x) \to (x, Ax)$ for all $x \in D$. So the topology $\tau_{D,S}^w$ on $\mathcal{S}_D(\mathcal{H})$ is generated by the family of seminorms $\{\rho_{x,x}\}_{x\in D}$ (here $\rho_{x,x}(A) = |(x, Ax)|, x \in D, A \in \mathcal{S}_D(\mathcal{H})$) which separates points.

Now let us note that for $A \in \mathcal{G}_D(\mathcal{H})$ we have $f_x(A) = (x, Ax) = |(x, Ax)| = \rho_{x,x}(A)$ as $A \geq 0$. So the *D*-weak operator topology $\tau_{D,\mathcal{G}}^w$ on $\mathcal{G}_D(\mathcal{H})$ is generated by the same family of functions $\{\rho_{x,x}\}_{x\in D}$ as the *D*-weak operator topology $\tau_{D,\mathcal{S}}^w$ on $\mathcal{S}_D(\mathcal{H})$. More precisely, the *D*-weak operator topology on $\mathcal{G}_D(\mathcal{H})$ is generated by the family of functions $\{\rho'_{x,x}\}_{x\in D}$ where $\rho'_{x,x}$ is the restriction of $\rho_{x,x}$ to the set $\mathcal{G}_D(\mathcal{H})$. (Let us recall that $\rho_{x,x}$ is defined on $\mathcal{S}_D(\mathcal{H})$.)

Now it can easily be shown that the *D*-weak operator topology $\tau_{D,\mathcal{G}}^w$ on $\mathcal{G}_D(\mathcal{H})$ is the corresponding relative topology $-\tau_{D,\mathcal{S}}^w$ restricted to $\mathcal{G}_D(\mathcal{H})$ ($\tau_{D,\mathcal{G}}^w = \tau_{D,\mathcal{S}}^w \cap \mathcal{G}_D(\mathcal{H})$).

Let us characterize the topology $\tau_{D,\mathcal{G}}^w$ in terms of convergence. Let $A_{\alpha}, A \in \mathcal{G}_D(\mathcal{H}), A_{\alpha}$ is a net, then $A_{\alpha} @ \xrightarrow{\tau_{D,\mathcal{S}}^w} A$ if and only if $(x, (A_{\alpha} - A)x) \to 0$ for all $x \in D$, i.e. $(x, A_{\alpha}x) \to (x, Ax)$ for all $x \in D$.

Let us denote by $\mathcal{B}_D^+(\mathcal{H})$ the set of all bounded positive linear operators defined on the dense subspace D of \mathcal{H} . So

 $B_D^+(\mathcal{H}) = \{A : D \to \mathcal{H} \text{ linear } | A \ge 0, \exists M \in \mathbb{R} : ||Ax|| \le M ||x|| \text{ for } x \in D\}.$

Clearly $\mathcal{B}_D^+(\mathcal{H}) \subseteq \mathcal{G}_D(\mathcal{H}).$

Now, we shall mention some results.

Theorem 2. (i) The closure of the set $\mathcal{B}_D^+(\mathcal{H})$ in the topology $\tau_{D,\mathcal{G}}^w$ is $\mathcal{G}_D(\mathcal{H})$.

(ii) The closure of the set $\mathcal{G}_D(\mathcal{H}) \setminus \mathcal{B}_D^+(\mathcal{H})$ in the topology $\tau_{D,\mathcal{G}}^w$ is $\mathcal{G}_D(\mathcal{H})$.

So bounded operators and unbounded operators are dense subsets of $\mathcal{G}_D(\mathcal{H})$ in *D*-weak operator topology on $\mathcal{G}_D(\mathcal{H})$ or, equivalently, the closure of each of these sets (in *D*-weak operator topology on $\mathcal{G}_D(\mathcal{H})$) is the whole set $\mathcal{G}_D(\mathcal{H})$. Now we show that each interval $[0, Q]_{\mathcal{G}_D(\mathcal{H})}$, where $Q \in \mathcal{G}_D(\mathcal{H})$ is an unbounded operator, has a similar property. Namely if we take the set of all bounded operators in $[0, Q]_{\mathcal{G}_D(\mathcal{H})}$ then its closure in *D*-weak operator topology on $\mathcal{G}_D(\mathcal{H})$ is just the whole set $[0, Q]_{\mathcal{G}_D(\mathcal{H})}$. The same is true also for the set of all unbounded operators in $[0, Q]_{\mathcal{G}_D(\mathcal{H})}$ (which is the set $[0, Q]_{\mathcal{G}_D(\mathcal{H})} \setminus \mathcal{B}_D^+(\mathcal{H})$).

Theorem 3. Let $Q \in \mathcal{G}_D(\mathcal{H})$ be an unbounded operator.

(i) The closure of the set $\mathcal{B}_D^+(\mathcal{H}) \cap [0,Q]_{\mathcal{G}_D(\mathcal{H})}$ in the topology $\tau_{D,\mathcal{G}}^w$ is $[0,Q]_{\mathcal{G}_D(\mathcal{H})}$.

(ii) The closure of the set $[0,Q]_{\mathcal{G}_D(\mathcal{H})} \setminus \mathcal{B}^+_D(\mathcal{H})$ in the topology $\tau^w_{D,\mathcal{G}}$ is $[0,Q]_{\mathcal{G}_D(\mathcal{H})}$.

References

- [1] D.J. Foulis, M.K. Bennett Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- M. Polakovič, Z. Riečanová, Generalized effect algebras of positive operators densely defined on Hilbert spaces, Int. J. Theor. Phys. 50 (2011), 1167–1174.
- [3] S. Pulmannová, Z. Riečanová, M. Zajac, Topological properties of operator generalized effect algebras, Rep. Math. Phys. 69 (2012), 311–320.
- [4] Z. Riečanová, Subalgebras, intervals and central elements of generalized effect algebras, Int. J. Theor. Phys. 28 (1990), 3209–3220

INSTITUTE OF COMPUTER SCIENCE AND MATHEMATICS, DEPARTMENT OF MATHEMATICS, SLOVAK UNIVER-SITY OF TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY, BRATISLAVA, SLOVAKIA

E-mail address: marcel.polakovic@stuba.sk