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Abstract. Spectral mapping theorems are proved for residual sets and quasianalytic spectral
sets of polynomially bounded operators.

We studied quasianalytic contractions in a sequel of papers [K1], [K2], [K3], [KT], [KSz1]
and [KSz2]. These investigations have been extended to polynomially bounded operators in
[K4]. We note that this extension is not direct consequence of the contraction case, since
polynomially bounded operators are not necessarily similar to contractions; see [P]. Absolutely
continuous (a.c.) polynomially bounded operators form the largest class of operators, where
the H∞-functional calculus — introduced for contractions by Sz.-Nagy and Foias (see Chapter
III in [NFBK]) — can be applied (see Section 5 in [K4]). In this talk we identify the unitary
asymptotes of the operators resulted by this calculus. We determine the transformation rules
for local residual sets, residual sets and quasianalytic spectral sets.

Let H be an infinite dimensional, complex Hilbert space, and let L(H) stand for the C∗-
algebra of all bounded, linear operators acting on H. Let T ∈ L(H) be an arbitrary a.c.
polynomially bounded operator. The H∞-functional calculus ΦT : H

∞ → L(H), f 7→ f(T ) for
T is the uniquely determined weak-∗ continuous (unital) representation of the Banach algebra
H∞, which transforms the identical function χ(z) = z into T . The norm of ΦT coincides with
the polynomial bound

KT := sup {∥p(T )∥/∥p∥∞ : 0 ̸≡ p ∈ P(T)} ,
where P(T) denotes the restrictions of polynomials to the unit circle T = {ζ ∈ C : |ζ| = 1}.
We recall that the Hardy class H∞ consists of the bounded analytic functions defined on the
open unit disc D = {z ∈ C : |z| < 1}. For any f ∈ H∞, the radial limit f̌(ζ) := limr→1− f(rζ)
exists at almost every ζ ∈ T, with respect to the normalized Lebesgue measure m on T. Via the
identification f ≡ f̌ , H∞ can be considered as a weak-∗ closed subspace of the dual L∞(T) :=
L∞(m) of the Banach space L1(T).

Let us consider the unilateral shift S defined on the Hardy–Hilbert space H2 by Sf = χf .
Since ΦS is an isometry, the operator g(S) is power bounded exactly when ∥g∥∞ ≤ 1. Further-
more, g(T ) = cI if g(z) = c for all z ∈ D. Let us assume that g ∈ H∞ is a non-constant function
and ∥g∥∞ ≤ 1. Our aim is to detect the properties of the operator Q := g(T ) ∈ L(H).

Given any f ∈ H∞, the composition f ◦ g ∈ H∞ is defined by (f ◦ g)(z) := f(g(z)) for all
z ∈ D.

Proposition 1. Q is an a.c. polynomially bounded operator, and

f(Q) = (f ◦ g)(T )
holds for every f ∈ H∞.

Furthermore, the following statement is proved among others.

Theorem 2. If T is quasianalytic, then so is Q, and the quasianalytic spectral set π(Q) of Q
is the measurable essential range of the restriction of g to the set π(T ) ∩ Ω(g).

Here Ω(g) := {ζ ∈ T : |g(ζ)| = 1}.
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