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LetB(H) denote the algebra of bounded linear operators on a complex separable Hilbert space
H. For an operator T ∈ B(H) by W(T ) we denote the smallest unital WOT-closed subalgebra
of B(H) containing the operator T . If W ⊂ B(H) is an algebra with identity by LatW we
denote the set of all orthogonal projections onto closed subspaces of B(H) which are invariant
for all operators in W, i.e.

LatW = {L ⊂ H : AL ⊂ L for all A ∈ W}.
By Alg LatW we denote the algebra of operators which leave invariant all subspaces from LatW,
i.e.

Alg LatW = {A ∈ B(H) : LatW ⊂ LatA}.
The algebra W is reflexive ([9]) if

W = Alg LatW.

A single operator A ∈ B(H) is reflexive if W(A) is reflexive.
For a given operator A ∈ B(H) we may consider the usual distance from A to an algebra

W ⊂ B(H) (denoted by dist(A,W)), but also we can define the distance determined by invariant
subspaces, i.e.

α(A,W) = sup{∥(I − P )AP∥ : P ∈ LatW}.
Usually α(A,W) ≤ dist(A,W). The operator T ∈ B(H) is called hyperreflexive if the usual
distance can be controlled by the distance α ([1]), i.e. there is a positive constant κ such that

dist(A,W(T )) ≤ κ α(A,W(T )) for all A ∈ B(H).

Longstaff characterized a reflexive subspace using rank one operators in its preannihilator
([8]). Arveson proved that the distance α may be calculated using rank one operators ([3]).

The concepts of k–reflexivity and k–hyperreflexivity are natural genaralizations of reflexivity
and hyperreflexivity, namely in corresponding conditions rank one operators are replaced by
operators of rank at most k ([2], [7], [6]).

We may also consider weaker property than reflexivity, namely hyporeflexivity ([4]). We say
that a commutative algebra W ⊂ B(H) is hyporeflexive if

W = W ′ ∩Alg LatW,

where W ′ denotes the commutant of W.
Recall that an operator V ∈ B(H) is called a partial isometry if V ∗V is an orthogonal projec-

tion. An operator V is a power partial isometry if V n is a partial isometry for every positive inte-
ger n. It is known ([5]) that if V is a power partial isometry on H then there is a unique orthog-
onal decomposition H = Hu(V )⊕Hs(V )⊕Hc(V )⊕Ht(V ) where Hu(V ), Hs(V ), Hc(V ), Ht(V )
reduce V and Vu = V |Hu(V ) is a unitary operator, Vs = V |Hs(V ) is a unilateral shift of arbitrary
multiplicity, Vc = V |Hc(V ) is a backward shift of arbitrary multiplicity and Vt = V |Ht(V ) is
(possibly infinite) direct sum of truncated shifts.

2010 Mathematics Subject Classification. 15A47.



K. PIWOWARCZYK, M. PTAK 43

The main result of my talk will be

Theorem 1. Let V ∈ B(H) be a power partial isometry. Then

(1) V is 2–reflexive,
(2) V is 2–hyperreflexive,
(3) V is hyporeflexive.
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